Introduction to Electromagnetism Overview

Yoonchan Jeong

School of Electrical Engineering, Seoul National University

Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

Email: yoonchan@snu.ac.kr

Maxwell's Equations

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$
 Faraday's law "Displacement current"
$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}$$
 Ampère's law
$$\nabla \cdot \mathbf{D} = \rho$$
 Gauss's law
$$\nabla \cdot \mathbf{B} = 0$$
 No free magnetic monopole (?)

$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$
Constitutive relations
$$\mathbf{H} = \frac{1}{\mu} \mathbf{B} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

Findings of 19th century!!

Syllabus

- Course book:
 - Field and Wave Electromagnetics by D. K. Cheng, 2nd ed., Addison-Wesley, 1989.
- What you have learnt (I presume):
 - Engineering mathematics I & II, Circuit theory I
- What you will be learning:
 - Chap. 1. The Electromagnetic Model
 - Chap. 2. Vector Analysis
 - Chap. 3. Static Electric Fields
 - Chap. 4. Solution of Electrostatic Problems
 - Chap. 5. Steady Electric Currents
 - Chap. 6. Static Magnetic Fields
 - Chap. 7. Time-Varying Fields and Maxwell's Equations
- Assessment:
 - Participation/quiz (10%), assignment (25%), practice (25%) exam 1 (15%), exam 2 (8%), exam 3 (17%)

Static

Time-varying

Conclusions

- "Introduction to Electromagnetism": easy or difficult?
 - Only 4 independent equations!
 - Even easier for static fields!
- A lot of exciting things ahead if you've made it through!
 - Electronics (Wired/Wireless communications, high-speed circuits, etc.)
 - Photonics (Optical communications, lasers, sensors, display, bio-medicine, energy, nano/meta material, etc.)
 - High-energy physics, atomic physics, particle accelerator, etc.)