Introduction to Electromagnetism Vector Analysis (2-1, 2-2, 2-3)

Yoonchan Jeong

School of Electrical Engineering, Seoul National University

Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953

Email: yoonchan@snu.ac.kr

Introduction

Quantities in electromagnetics (from a mathematical viewpoint)?

- Scalar: Completely specified by its magnitude (positive or negative, together with its unit)
- Vector: Required both a magnitude and a direction to specify

How do we specify the direction of a vector?

- In a three-dimensional space, three numbers are needed.
- These numbers depend on the choice of a coordinate system:

e.g.) Cartesian coordinates, cylindrical coordinates, spherical coordinates, etc.

However, physical laws and theorems certainly must hold irrespective of the coordinate system:

- The general expressions of the laws of electromagnetism do not require the specification of a coordinate system
- A particular coordinate system is chosen only when a problem of a given geometry is to be analyzed.

What we are going to learn on vector analysis

1. Vector algebra:

Addition, subtraction and multiplication of vectors

2. Orthogonal coordinate systems:

Cartesian, cylindrical and spherical coordinates

3. Vector calculus:

Differentiation and integration of vectors; Line, surface and volume integrals; "del" operator; Gradient, divergence and curl operations

A deficiency in vector analysis in the study of electromagnetics is similar to a deficiency in algebra and calculus in the study of physics.

"It is obvious that these deficiencies cannot yield fruitful outcomes!"

Vector: Magnitude and Direction

Magnitude and direction of a vector A:

$$\mathbf{A} = \mathbf{a}_A A$$

Magnitude:
$$A = |\mathbf{A}|$$

Dimensionless unit vector:
$$\mathbf{a}_A = \frac{\mathbf{A}}{|\mathbf{A}|} = \frac{\mathbf{A}}{A}$$

Graphical representation of vector A

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989

Equality:

Two vectors are equal if they have the same magnitude and the same direction.

Vector Addition and Subtraction

Vector addition: C = A + B

- 1. By the parallelogram rule
- 2. By the head-to-tail rule

Vector addition

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989

Rules for vector addition:

Commutative law:
$$A + B = B + A$$

Associative law:
$$A + (B + C) = (A + B) + C$$

Vector subtraction:
$$C = A - B = A + (-B)$$

 $-\mathbf{B}$: Negative of vector \mathbf{B}

Having the same magnitude but with an opposite direction w.r.t.**B**

$$-\mathbf{B} = (-\mathbf{a}_{\scriptscriptstyle R})B$$

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

Scalar or Dot Product

Scalar or dot product of two vectors **A** and **B**:

$$\mathbf{A} \cdot \mathbf{B} \equiv AB \cos \theta_{AB}$$

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 198

where θ_{AB} is the smaller angle between **A** and **B**

Note: 1. Magnitude: Less than or equal to the product of their magnitudes

- 2. Either a positive or a negative quantity, depending on θ_{AB}
- 3. Equal to the product of the magnitude of one vector and the projection of the other upon the first one
- 4. Zero when the vectors are perpendicular to each other

Rules for dot product:

$$\mathbf{A} \cdot \mathbf{A} = A^2$$
 or $A = \sqrt{\mathbf{A} \cdot \mathbf{A}}$

Commutative law: $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$

Distributive law: $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$ Proof? HW2-1

Vector or Cross Product

Vector or cross product of two vectors \mathbf{A} and \mathbf{B} :

$$\mathbf{A} \times \mathbf{B} \equiv |AB \sin \theta_{AB}| \mathbf{a}_n$$

Where \mathbf{a}_n is perpendicular to the plane containing \mathbf{A} and \mathbf{B} ; its direction follows that of the thumb of the right hand when the fingers rotate from \mathbf{A} to \mathbf{B} through the angle θ_{AB}

(the right-hand rule)

Cross product

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

Rules for cross product:

$$\mathbf{B} \times \mathbf{A} = -\mathbf{A} \times \mathbf{B}$$

Distributive law: $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$ Proof? HW2-2

Not associative: $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) \neq (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$

Product of Three Vectors

Scalar triple product:

Vector triple product:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

Cyclic permutation

Scalar triple product

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

"back-cab" rule

Vector Triple Product

Proof:

Let
$$\mathbf{A} = \mathbf{A}_{//} + \mathbf{A}_{\perp}$$
 (w.r.t. $\mathbf{B} - \mathbf{C}$ plane)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A}_{//} + \mathbf{A}_{\perp}) \times (\mathbf{B} \times \mathbf{C})$$

$$= \mathbf{A}_{//} \times (\mathbf{B} \times \mathbf{C}) \equiv \mathbf{D}$$

$$D = \mathbf{D} \cdot \mathbf{a}_{D} = A_{//} BC \sin(\theta_{1} - \theta_{2})$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Vector triple product

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989

Note that $A_{//}$, B & C are on the same plane.

$$= A_{//}BC(\sin \theta_1 \cos \theta_2 - \cos \theta_1 \sin \theta_2)$$

$$= (B \sin \theta_1)(A_{//}C \cos \theta_2) - (C \sin \theta_2)(A_{//}B \cos \theta_1)$$

$$= [\mathbf{B}(\mathbf{A}_{//} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A}_{//} \cdot \mathbf{B})] \cdot \mathbf{a}_D ?$$

Let
$$\mathbf{B}(\mathbf{A}_{//} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A}_{//} \cdot \mathbf{B}) = \mathbf{D} + k\mathbf{A}_{//}$$

 $\rightarrow \mathbf{A}_{//} \cdot [\mathbf{B}(\mathbf{A}_{//} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A}_{//} \cdot \mathbf{B})] = \mathbf{A}_{//} \cdot (\mathbf{D} + k\mathbf{A}_{//})$
 $\rightarrow (\mathbf{A}_{//} \cdot \mathbf{B})(\mathbf{A}_{//} \cdot \mathbf{C}) - (\mathbf{A}_{//} \cdot \mathbf{C})(\mathbf{A}_{//} \cdot \mathbf{B}) = 0 = \mathbf{A}_{//} \cdot \mathbf{D} + k\mathbf{A}_{//}^2$
 $\leftarrow \mathbf{A}_{//} \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C}, \ \mathbf{A}_{//} \cdot \mathbf{B} = \mathbf{A} \cdot \mathbf{B} \qquad \rightarrow k = 0$

$$\therefore \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$