Light: Basic principles

Dr Yoonchan Jeong

School of Electrical Engineering, Seoul National University Office: 302-523 (temporary), Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: yoonchan@snu.ac.kr

Human eye & colour vision

Not everyone sees the same colours!

Eye optics degeneracy, variations in cone pigments, and different psychological experience

Retina photoreceptors:

- Cones (s, m, l): sensitive to colours
- Rods: not sensitive to colours, darkadapted

Brightness perception

- Perceived brightness with colours (cones)
- Most sensitive at 555 nm:
 683 lm/W
- Perceived brightness is different with colours even with the same optical power!
- More important to displays
- Scotopic vision:
 - Dark adapted (rods)
 - Most sensitive at 507 nm: 1700 lm/W

[•] Photopic vision:

CLASS 1 LASER PRODUCT

e.g. 0.39 mW @600 nm

LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT

Electromagnetic-Photon Spectrum

Visible Light (400 nm ~ 700 nm)

Maxwell's Equations

□ Maxwell's Equations

 $\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0 \qquad \text{Faraday's law}$ $\nabla \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{J} \qquad \text{Ampère's law}$ $\nabla \cdot \boldsymbol{D} = \rho \qquad \text{Gauss's law}$ $\nabla \cdot \boldsymbol{B} = 0 \qquad \text{No free magnetic monopole (?)}$

Constitutive Equations

 $D = \varepsilon E = \varepsilon_o E + P$ $B = \mu H = \mu_o H + M$ ($\varepsilon = \varepsilon_o n^2, \mu = \mu_o$) Isotropic and non-magnetic

Wave Equations

U Wave Equations

$$\nabla^2 \mathbf{E} - \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0, \ \nabla^2 \mathbf{H} - \mu \varepsilon \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0$$

Plane Wave

$$\psi = e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})}, \quad |\mathbf{k}| = \omega \sqrt{\mu \varepsilon}$$

D Phase Velocity

$$\omega t - \mathbf{k} \cdot \mathbf{r} = \text{constant}, \quad \mathbf{v}_{p} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu\varepsilon}},$$

 $c = \frac{1}{\sqrt{\mu_{o}\varepsilon_{o}}} = 2.997930 \times 10^{8} \, m/s$

(Homogeneous and no source) e.g. $f(x,t) = f(x - \delta x, t - \delta t)$

Boundary Conditions

Continuity Relations

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0 \implies \boldsymbol{n} \times (\boldsymbol{E}_2 - \boldsymbol{E}_1) = 0 \iff \text{Tangential Comp.}$$

$$\nabla \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{J} \implies \boldsymbol{n} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{K} \iff \text{Tangential Comp.}$$

$$\nabla \cdot \boldsymbol{D} = \rho \implies \boldsymbol{n} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma \iff \text{Normal Comp.}$$

$$\nabla \cdot \boldsymbol{B} = 0 \implies \boldsymbol{n} \cdot (\boldsymbol{B}_2 - \boldsymbol{B}_1) = 0 \iff \text{Normal Comp.}$$

Reflection and Refraction

Snell's Law

 $n_i \sin \theta_i = n_t \sin \theta_t$ \Leftarrow Field continuity of tangential components

Brewster Angle and Critical Angle

□ **Reflectivity**

Brewster Angle

$$\theta_B = \tan^{-1}(\frac{n_t}{n_i})$$

 $\Leftarrow \theta_i + \theta_t = \frac{\pi}{2}$
For P-polarization

Incident Angle θ_i [deg] **Critical Angle** $\theta_c = \sin^{-1}(\frac{n_t}{n_i})$ $\Leftarrow n_i > n_t, \ \theta_t = \frac{\pi}{2}$ Total internal reflection

Polarization and Anisotropy

Constitutive Relation for Electrical Field

$$\boldsymbol{D} = \boldsymbol{\varepsilon} \boldsymbol{E} = \boldsymbol{\varepsilon}_{o} \boldsymbol{E} + \boldsymbol{P} \quad \text{with } \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{o} \begin{pmatrix} n_{x}^{2} & 0 & 0 \\ 0 & n_{y}^{2} & 0 \\ 0 & 0 & n_{z}^{2} \end{pmatrix} \quad \begin{cases} n_{x} = n_{y} = n_{z} \rightarrow \text{Isotropic} \\ n_{x} = n_{y} \neq n_{z} \rightarrow \text{Uniaxial} \\ n_{x} \neq n_{y} \neq n_{z} \rightarrow \text{Biaxial} \end{cases}$$

Source: Optical Waves in Crystals, A. Yariv and P. Yeh

Dispersion

Material Dispersion

White light which is a mixture of colors is separated into its different wavelengths.

Refractive index n is inherently a function of wavelength.

Recall Snell's law! $n_i \sin \theta_i = n_t \sin \theta_t$

Scattering

Phenomenon

- Interaction between an electro-magnetic radiation and small particles or molecules
- Different wavelengths get deflected in different directions.

Rayleigh Scattering

- When an electromagnetic radiation hits a particle whose diameter is smaller than the wavelength of the radiation
- Short wavelength is scattered more than long wavelength ~ $\frac{1}{2^4}$

□ Mie Scattering

- When an electromagnetic radiation hits a particle whose diameter is similar or greater than the wavelength of the radiation
- Roughly independent of wavelength

Diffraction and Interference

Diffraction

A wave such as light is **bent** when it passes an **edge** or through an **aperture**. The aperture or the edge acts as a radiating point (Huygens– Fresnel principle).

This effect increases as the physical dimension of the aperture is close to the wavelength of the wave.

Constructive Interference

Destructive Interference

Interference by Multiple Reflection

= 0.3 = 0.6

= 0.9

R = 0.99

Fabry-Perot Interferometer

Constructive interference (100 % transmission) $\Rightarrow 2nd \cos\theta = m\lambda$