Guided waves and optical fibres

Dr Yoonchan Jeong

School of Electrical Engineering, Seoul National University Office: 302-523 (temporary), Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: yoonchan@snu.ac.kr

Optical Waveguides

Total Internal Reflection

$$\theta_i > \theta_c = \sin^{-1}(\frac{n_{cl}}{n_{co}})$$
 If the incident angle is greater than θ_c

D Numerical Aperture

$$NA = n_o \sin \theta_a \approx \theta_a = \sqrt{n_{co}^2 - n_{cl}^2}$$

Optical Waveguides

Quantized Mode State

Optical Fibers

■ A flexible optically transparent fiber, as of glass or plastic, through which light can be transmitted by successive internal reflection

Structure of Optical Fiber

Optical Fiber Fabrication

Double Crucible Directly drawing

Rod in Tube Preform and drawing

Preform Fabrication

Deposition Techniques

- Modified chemical vapor deposition (MCVD)
- Plasma-enhanced modified chemical vapor deposition (PMCVD)
- Outside vapor deposition (OVD)
- Axial vapor deposition (AVD)

Preform Fabrication by MCVD

Dopants: GeO_2 , P_2O_5 , $ErCl_3$, Nd_2O_3

Drawing and Spooling

Procedure

- Drawn from the Preform
- Quality checked
- Coated for protection
- Stored on a spool

Optical Fibers

7

Single-Mode Fiber

Air or Jacket ------>

----- : Core mode ----- : Cladding mode

Core Mode

Mode Expansion

 $Core (r \le r_{co})$ $E_{z} = a_{co}J_{v}(h_{co}r)$ $H_{z} = b_{co}J_{v}(h_{co}r)$ $\rightarrow E_{r}, E_{\phi}, H_{r}, H_{\phi}$ where $h_{co} = \sqrt{k_{o}^{2}n_{co}^{2} - \beta^{2}}$

Cladding $(r \ge r_{co})$ $E_z = a_{cl} K_v (h_{cl} r)$ $H_z = b_{cl} K_v (h_{cl} r)$ $\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$ where $h_{cl} = \sqrt{\beta^2 - k_o^2 n_{cl}^2}$

note : exp[$i(\omega t - \beta z + v\phi)$] : omitted

Continuity condition of tangential fields at $r = r_{co}$ \Rightarrow <u>Core-bounded mode</u>

Exact Core Mode

□ Mode Expansion

$Core(r \le r_{co})$	Cladding $(r_{co} < r \le r_{cl})$	$Air (r > r_{cl})$
$E_{z} = a_{co}J_{v}(h_{co}r)$ $H_{z} = b_{co}J_{v}(h_{co}r)$	$E_{z} = a_{cl}K_{v}(h_{cl}r) + c_{cl}I_{v}(h_{cl}r)$ $H_{z} = b_{cl}K_{v}(h_{cl}r) + d_{cl}I_{v}(h_{cl}r)$	$E_{z} = a_{ai}K_{v}(h_{ai}r)$ $H_{z} = b_{ai}K_{v}(h_{ar}r)$
$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$	$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$	$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$	where $h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$	where $h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$

note : exp[$i(\omega t - \beta z + \nu \phi)$] : omitted

■ Continuity condition of tangential fields at $r = r_{co}$, $r = r_{cl}$ ⇒ <u>Core-bounded mode</u>

Cladding Mode

□ Mode Expansion

$Core(r \le r_{co})$	Cladding $(r_{co} < r \le r_{cl})$	$Air (r > r_{cl})$
$E_z = a_{co} J_v(h_{co} r)$ $H_z = b_{co} J_v(h_{co} r)$	$E_{z} = a_{cl}J_{v}(h_{cl}r) + c_{cl}Y_{v}(h_{cl}r)$ $H_{z} = b_{cl}J_{v}(h_{cl}r) + d_{cl}Y_{v}(h_{cl}r)$	$E_{z} = a_{ai}K_{v}(h_{ai}r)$ $H_{z} = b_{ai}K_{v}(h_{ar}r)$
$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$	$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$	$\rightarrow E_r, E_{\phi}, H_r, H_{\phi}$
where $h_{co} = \sqrt{k_o^2 n_{co}^2 - \beta^2}$	where $h_{cl} = \sqrt{k_o^2 n_{cl}^2 - \beta^2}$	where $h_{ai} = \sqrt{\beta^2 - k_o^2 n_{ai}^2}$

note : exp[$i(\omega t - \beta z + \nu \phi)$] : omitted

Continuity condition of tangential fields at $r = r_{co}$, $r = r_{cl}$ \Rightarrow <u>Cladding-bounded mode</u>

Effective Index of Core Mode

□ As a function of *V* parameter

■ $V < 2.405 \Rightarrow$ Single-mode operation

Dispersion and Attenuation in SMF

Dispersion and Attenuation vs. Wavelength

Source: Nonlinear Fiber Optics, G. P. Agrawal

Attenuation in SMF

Causes of Attenuation

- Absorption
 - Intrinsic absorption: ultraviolet and infrared
 - Absorption by impurities: OH⁻ and transition metal
 - Absorption by atomic defects
- Scattering
 - Rayleigh scattering prohibits the use of wavelength below 0.8 μ m, which is proportional to $1/\lambda^4$.
- Geometrical effects
 - Bending loss

Typically, the attenuation in SMF is 0.2 dB/km.

Dispersion in SMF

U Types of Dispersion

- Intermodal dispersion
 - Pulse spreading in multimode fiber
- Intramodal dispersion
 - Material dispersion
 - Waveguide dispersion: usually *smaller* than material dispersion Short wavelength: The effective index is close to n_{core} . Long wavelength: The effective index is close to $n_{cladding}$. **Recall V parameter!**

Dispersion is a problem in fiber communications: It eventually limits the *bandwidth* of the fiber.

Data Transmission in SMF

Nonlinearities in Fibers

Stimulated Raman Scattering (SRS)

A stimulated effect in which the energy from a photon incident on a molecule delivers parts of its energy to <u>mechanical vibration</u> of the molecule and part into reradiated light (*Stokes light*) of longer wavelength than the incident light

□ Stimulated Brillouin Scattering (SBS)

A stimulated effect (highly directional) due to interaction between the traveling light wave, composed of photons, and *a traveling sound wave* that it induces, which can be considered as composed of quantum sound particles, *phonons*

Given Structure Four-Wave Mixing (FWM)

Third-order cross-product of electric field. $f_i - f_j - f_k \Rightarrow$ frequency mixing, interfering effect in WDM