Basis of Equivalent Static Method

Dynamic Theory

dynamié equilibrium :  Mii + Cu + Ku = —Mrii (1)

eigenvalues and eigenvectors : (K — O’Mu=0=>0, ¢

total response = sum of the modal responses : u = z¢,Y,. =QY

Modal decoupling
?;'TM?/Y; + ?/IC@Y/ + @IIS?IYI = ?;TM’:’:Q (1)
Dynamic equation of each mode

M/*Y; + 2§[wiMi*Yi + a)izM*iY:‘ =-Li, (1)

Y: + 24,:'60/')}/' + a)/‘ZYf =7 Al;.* i, (1)

1

Response spectrum
5.
V200, + a)izyi = “i(.g(t)

I

7(;\'.

—_—

—

Maximum displacement of each mode estimated from response spectrum

L L

Y ="y = Sd(C. W
/,max Mi* y/,max M[* (gl, /)
Story forces £, = M(g¥,,) = Moy,

~ ~

Base shear = sum of the story forces

Viws =1 M@, 0,

hase i imax
max —— i
|

L
L =S, o,
Y (&)

va
W

Sn(gi’wi)



Effective weight of ith mode can be defined as follows.

C

L’
W** — i
I' Mis: g
W**
I/haxe,i = : Sa (é(I ’ ]:)

Overall base shear

f 2.
Vha\'e = Zr/haxe,i

If i* mode is dominant,

v,

hase

=~V

base i

and W™ ~W
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Rayleigh Principle

For a continuum system,

Using energy conservation in free vibration,

Energy = KE + PE
T@W) + V(@)

i

constant

i

constant

T(t) = kinetic energy
V(t) = potential energy

Assuming u(x,t)=@(x)Y(t),and Y(t) =Y, sinwt

T(t) = j”% () [1ix, )] dx = —;—M*Y(t)z

(M = [ () (x)d)

V() = j:'%El(x) [u"(x,1)] dx = %K*Y? 0

(K = [ E1(0)$" (x)d)

In general ,

T
T(t) :%M*YZ () :%M*a)sz cos’wr (4%

V()= %K*Yz(t) = —12-1(*11,2 sin® @t

Vi)

(snit)

T is 2 maximum when V is a minimum and vice-versa.




Atany time, T(t)+V(t)=constant=T_ =V,

max

Therefore, lM*a)2 =—1—K*
2 2
W~ K*
M

When the shape function is an approximate, the angular frequency is an approximate

value. The value of @ depends on the assumed shape function.

Rayleigh’s Principle.

1)The Rayleigh Quotient is an upper bound to @ .

A = > w

Y& ctual = inverse iteration method / stodola method

This is because the order of K* is lower than the order of M ..
Thus, K*/M" is overestimated.

2) The fundamental frequency is a true minimum point.
First-order change in ¢(x) leads to second order changes in @ .

Asaresult, o will be much closer to @, »

approx.

than @(x) is to the true mode shape.
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For a discrete system

Maximum kinetic energy of the structure

T = lzﬂ miu (lmzfj
2

max 2 ~Max ~ ~max

Maximum potential energy

V;nax = l-Lll’::‘la‘( Kumax (l ku2 j
27007 2




<x Exact solution for multi-degree of system (Iterative method)
M 0 K -K
0 2M -K 3K Zzzrzz ) —— U,
2./ K
u=¢Y(1) LSS, —> o,
K
1 TIII7 77 7T T 777
1) Assume ¢ ={ }
1 hecr /:w/’/cl.wg,

= 010/7 Shear dtormatiom

R |
< > > B
Kk 3K |1] 2k, 8 emsitered.

2) Inertia forces from u*

C

. : e (0) 2 (0) 2 M
7777777770 — Mii,” = Mo Y () PV =w M Y ()

777777777 — 2Mii,” =2M oY (1)

S S Tl rTT 7y

3) Find deflected shape from the inertia forces:




=S

/\2=

_<1 3/5{1\4 o}[ﬁ_sz
0 2M||3/5

o} =0.5116K/

sl KK
kg © 137k sk 3] ossk
My

T
s

[terative calculations until ?(0) = (é“) ¢ gj “ b ‘“)
1
Exact solution : o’ = 0.51%/[ ¢ = %

(K-’ M) =0
Modal Analysis o =» exact solution
[ -oM|=0
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Modal superposition method using design response spectrum

1) Design Response Spectrum

Sa Foe
062574045,

{ I’o
B Lo

5 \

/ AN

/! AN

Spi-4 o S, =S, /T

=
.
N o \\/

|

b
LA

7, T; 1.0 TR
I,=02 S, /'Sps
Io= Sy /Sps

2) the number of modes required to be considered

All significant modes to reach 90% of the participating mass of the structure

3) modal combination

SRSS (Square Root of Sum of Square)
CQC (Complete Quadratic Combination)

4) Modification

c. =085 >1.0
%

t

V' = base shear calculated by equivalent static method,
basedon C, T, (1.4<C,6<1.7)
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Liner Elastic Dynamic Response of Multi-degree of freedom (MDOF)
Systems subjected to earthquake motion

i+ Cii + Ku = P =—Myii, (1) )

Eigenvalue Problem : (K-o’Mu=0

=> @ :i" eigenvalue

¢, : corresponding eigenvector

u=X4Y=0Y (.Y arebases) . (2)
From (1) and (2)
' YT+ D' COY + KDY =~ Mrii, (1) (3)

Using the orthogonality of eigenvectors,

?/'I.M?/ = O ’ ?iY'K?/ = 0

Also it is assumed ¢ Cg, =0

The dynamic equilibrium equation (3) of a n dof system can be decoupled into n sdof
systems.

QIY'M@Y; + ?ITC?IYI + @rlgélg = “?17.]\4’:113,

?27‘]\!?2?2 + QJC@QYE + ?zrlggéz):z = _?27‘1\!’:7"‘;’

¢H'I.M¢Hj/;7 + n/C I’II};7 + W/K == IMrii’

8-9
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By eigenvalue problem, a n dof system is decomposed into n number of one dof system.
The dynamic motion of the original system is calculated by superposition of the
dynamic motions of the decomposed n-one dof systems.

For i™ mode,

O MPOY +O/CDY, +Q KO, =0 Mrii, (4

(’ M*iY;' + Zé’ia)imi*f,i + a)izmi*Yi =—L

g

or Y +2lwY +w’m'Y, = —M’* i, (5)

If a response spectrum for one dof system with ¢ =¢; is provided by design code, or

if a response spectrum is readily made with a specified EQ time history.

Smovth hes,mmx P‘S‘M,‘
Fpectrum '
5y clc:-}n code

response Spectrum

M\f)'p o s,ocu?/,‘;
ER “ime A;S"b)‘t?_

‘T



g-1/

Li

Then Kmax = Mi* Sd(é,xT;)

—lf—zp S.(¢.T) u, =2.¢Y, (Modal analysis)
M o, ’ 2

i i

or

Q

imax

Ui mx =P Yimee  1f we use SRSS combination method.

levelk _ 2levelk 2 leveik 2 levelk

max ul,max uZ,max ) n,max

Member actions for j" member

j i
- =K'u
~ i,max ~ i,max

S = S? o +5? i’kax +.+ G2 o For k™ dof of j"™ member

1max nmax

Generally, we do not consider the total number of eigenmode that is the same as the
total number of d.o.f.. ;
Since the contribution of the lower modes to the base shear is much larger than that of

the higher mode, we usually use several low modes.

From (5)

Yz + 24’@'2 + a)izmi*Yi = _Ll*u
M

i

g

The response ¥, dependson L, (=g Mr)

L, = ¢gm, + pm, + pm,
L, = gm — g,m, + g;m,

If m=m=m, , L>L,

2

>V, ( base shear is proportional to L"*Sa )

3base

=V

1base

1



Number of modes considered for EQ Response

Use of modal analysis also permits an estimate of the number of modes which must be
included to capture the essential part of the response. First, review some definitions:

Modal mass participation factor:

¢/
¢ M

¢ Mr _ L
M’ M’

i i i

PF, =

. |y

If the eigenvectors are normalized so that M, =1

PF, = ¢/ Mr

Resulted from response spectrum analysis

2
I/base = Li:- Sa = Ltz'Sa

Which will be compared with V,, =>M S,

Modal effective mass factor

2
EM, = 2L
XM

(ZPF=YM)
all all

k
If we use & number of modes and if ZEM,. is close to 1, we can say that the

analytical result is accurate enough.

k
Generally, we use k& number of modes so that ZEM ;209

L _ g "
2 I'=[LLLL,L,]
:(@r J:)T (@TM(P)“ ((PT J:)
=(r"Mo)(o M0 ) (0 Mr)
=r"Mr=>M
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Sources of damping in structures

1) viscous effects — fluid friction proportional to velocity

2) coulomb friction (constant drag) — dry friction  proportional to pressure
3) structural damping (friction proportional to displacement)

4) elastic hysteresis caused by rote effects

5) inelastic effects (cracking, yielding, etc)

. Damping coefficient in fundamental mode
Material
Undamaged Some damage Severe damage
Steel 1% 3% 5%
RC 3% 5% 7%
Masonry 5% 7% 10%
wood 3% 5% 7%
A
Sa 5o vda,nlpm& frr [neor elastie

NS/voh Se spechum

for w//a/ose (miT stoTe
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Time history Analysis

Considering the uncertainties of time history of EQ ground motions, multiple records
should be used to assure the safety of structures

Number of time history records = 3
when earthquake design is performed for the maximum response values.
=17

when earthquake design is performed for the average response values.

A pair of x and y directions should be used per each record.

The amplitude of the records should be greater than the demand required in the code-
specified design response spectrum :

SRSS of the two (x and y) response spectral values of EQ > 0.9 x 1.3 x response
spectrum of design code, in the range of 0.2T < T < 1.5 T where T = fundamental
dynamic period of the structure.

Artificial time history
Based on the previous histories of earthquakes, artificial time history can be made
using assumptions of frequency and durations of earthquakes.
Relevant web site : http://www.daveboore.com/software_online.html (Prof. David Boore)
SIMQKE (1999) : Gasparini & Vanmarche
(artificial earthquake based on random vibration)

SRsS of fesponse Spectrum  of ER

» Za'?"/‘\.; x ﬁ)&fpmse Spednem
67&‘ JG«S.'S» CsJ_c

l

g}




Time history Analysis

Considering the uncertainties of time history of EQ ground motions, multiple records
should be used to assure the safety of structures

Number of time history records = 3

when earthquake design is performed for the maximum response values.

=17
when earthquake design is performed for the average response values.

A pair of x and y directions should be used per each record.

The amplitude of the records should be greater than the demand required in the code-

specified design response spectrum : _

SRSS of the two (x and y) response spectral values of EQ > 0.9 x 1.3 x response
spectrum of design code, in the range of 0.2T < T < 1.5 T where T = fundamental
dynamic period of the structure.

Artificial time history
Based on the previous histories of earthquakes, artificial time history can be made
using assumptions of frequency and durations of earthquakes.
Relevant web site : http://www.daveboore.com/software_online.html (Prof. David Boore)
SIMQKE (1999) : Gasparini & Vanmarche
(artificial earthquake based on random vibration)
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Direct Integration Method

Incremental Dynamic Equilibrium Equation ( For 110°F)

MAG(0) + chit) + K du(r) = AP(?)

= ~MrAi, (1)

Here, we have 3 unknown vectors A#, Au, Au and one equation vector.

Therefore we need to reduce 3 unknown vectors to one unknown vector.

We assume  Azi(¢) = function of (u(2),4i(?), u(?), Au(?))
Au(t) = function of (u(?),u(t),u(t), Au(t))

The assumptions are  constant acceleration method
Linear acceleration method
Wilson -6 method etc.

. linear acceleration method : conditionally stable, A#/T, <1/1.8

. constant acceleration method: unconditionally stable




Constant Average acceleration Method (Newmark)

Assume i (t) in constant over interval.

+ - . 1ot .
ROV Gy =i+ 2L M
ayce) 2
u ‘t){ 1 B | ke
: : i(t-+7) =i(0) +ii (D)7 + T
ult+z) L (1+42) 2
by L Ai(D)
Q}Ct){ _—_——— Au(t) —yAt+—2——At 2)
gy 2t s e
,M f*w u(t+2) =)+ D)+ A“(j)’
C«A’Lf) T T T T T . 2 . 2
{ Au(t) =i()ae+ EOAL A“(2A’ 3)
4 At
From (3)  Au(f) = F[A%(l‘) —u(t)At —i(z) T) “)
Substitute (4) into (2)
. . 2 ) . AP
Au(t) =u(t)At v A@-%(t)At—%(t‘)T )

Now plug (4) and (5) into
mAi(t) + ci(e) + kbu(t) =—Mr i, (1)
4 . oy AP . 2 . ., A ..
M (—A-tz) Au(r) —u(r)At —%(1)7 +C u(f)AH—A;(Aal(l‘)—%(f)Af *%(07) +KAu(t) =-MrAii (¢)
Regrouping the terms for Au(?)

4 2 . 4 . . .
A%(t)[A—ﬂM+Z;C+IS}=~MrAug +M[Ea(r>+2g<r)]+c[2y(t>]

\

[la T3

4
KAu(t)=AP  solve Au(t)
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Evaluation of Damping for MDOF systems solution by Direct
Integration.

When a MDOF system is solved by direct Integration, we cannot work directly with
¢, (damping ratio), since the eigenvalue problem is never solved. We must compute C

directly.

Rayleigh Damping
Assume C=aM+aK

Since the orthogonality of eigenvectors are effective for M and K

G =20 oM =a,M; +apK1* =a,M; +apa)12M1* 1)

C; =2¢,0,M; =aM, +a K, =a M +aolM;  (2)

This gives us 2 equations in g, and g

a4, 4

= 4+
d 2, 2 !

4 4%

= + .
(=g s

Solve for a, intermsof ¢,¢,

This kind of damping can determine ¢, for other modes

X

R0y/¢;'3)) Damping, }; = R alw;
2¢45¢ 2
/\/ ///

\ - -G S fHnegs /DVb/?o‘rt{M a/am,oma

- ~ —~ /\,; mass /amplmlfm‘v( Jam,e)hj

T —

7

Lo

¢ increase for increasing @ (higher modes), roughly agreeing with experimental

observation.

g—18"
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Comparison between modal superposition and Direct Integration

Modal superposition Direct Integration
1) linear system only 1) linear and nonlinear systems
2) easy to specify ¢, 2) hard to specify ¢more complex
than Rayleigh damping
3) must solve eigenvalue 3) no eigenvalue problem
4) can use response spectra 4) can’t use spectra
B e
5) Efficient for lengthy response 5) efficient for short-duration
response
+time K Poded (B3P Spednamy)
M}uiwd Superpesting
C ; E—,}enva/ue -
roblem VU — Dired Tntegratim
7V
/enjf% of Fespomse

To éé Cov/cu/u'fcc(
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Direction of EQ load

In reality, earthquake motions are the three dimensional motion: x- directional motion

should be combined with y-directional motion and, even with the vertical motion.

For design categories ‘C’ and ‘D’, the combination of two directional loadings is
considered.

30 Za

O . ®

SRSS
T/ o0 Yo ‘ 724

Tg3Z 2 xf el HEL 3_;74,2«5 NV Y S R 2d §
(452w % o 3 o) Tagir 3%y i Log,e

Seu 24t 4§
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Building separation

For ‘D’ Type building, to avoid collision of adjacent buildings,

5MT = \/(51&/11)2 + (5M2)2

ng

=0

GS;‘M-—%

é—-—fmz

LT T

VAN AXARdyd
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( Special EQ load

Lendesiradle
de fremed ‘g)\éféb
<xlessine (ool
Lebormating
, ~— PrloT)
77777 77 crc? IR D bty Sfetlare

Basically, in earthquake design codes, the R factor is used, assuming a certain degree of
ductility is assured for structural system. Thus, if the target ductility cannot be obtained,
the R factor should be decreased. In particular, if the use of a brittle member (with
extremely small ductility) is unavoidable within the load-transfer mechanism, the brittle
member should be sufficiently strong to withstand the ultimate member force which can

be developed by the overstrength of other ductile members. P
C oot
E, =QE+02S,,.D ' gHreng
Dastgn
Ioa-i j
Q, = overstrength factor
P .a
d 7
7
’ Lritila member duetide member
_ P Y
Pt 1
' LE
_ e Byt - _ -
Z A
C r A 7 Fe =3B




