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Contents

20.1 Velocities and Energies in Turbulence 

20.2 Continuity for Turbulent Motion

Objectives

- Learn fundamental concept of turbulence

- Study Reynolds decomposition

- Derive Reynolds equation from Navier-Stokes equation

- Study eddy viscosity model and mixing length model



3/31

20.1 Velocities and Energies in Turbulence

20.1.1 Reynolds decomposition

(1) Velocity decomposition

- The variables in a turbulent flow are described using the theory of 

stochastic process and random variables even though fluid-dynamic 

turbulence is not entirely random.

- instantaneous velocity = time-averaged value + fluctuating components
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20.1 Velocities and Energies in Turbulence

T = long time compared to the time scale of the turbulence

- T should include (smooth out) all the effects of turbulence fluctuation

- pipe flow: 10-1~100 s; channel/river flow: 101~102 s
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[Re] Integral time scale, TI

- Time over which a turbulent fluctuation is correlated with itself

- A measure of the memory of the turbulence
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[Re] Averaging of stationary vs nonstationary turbulence 

20.1 Velocities and Energies in Turbulence

1) Stationary turbulence

- Use time average of a single time series 

data
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2) Nonstationary turbulence

- Use ensemble average of N independent 

realization of time series data
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20.1 Velocities and Energies in Turbulence

 Ensemble average of nonstationary turbulence
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(∵ fluctuations are both plus and minus) (20.6)

(2) Pressure and stress decomposition
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(3) Turbulence intensity – show turbulence effects

→ root-mean-square (rms) = square root of variance = standard deviation 

- average intensity of the turbulence = rms of u'

(20.8)

• Relative Turbulence Intensity (RTI) = 
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20.1 Velocities and Energies in Turbulence



10/31

[Ex] Actual velocity records obtained at two depths in the open channel 

flow (stationary turbulence)

- The time-averaged velocity is greater farther from the wall, but the 

turbulence intensity is significantly larger near the wall.

20.1 Velocities and Energies in Turbulence
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- The time-averaged velocity increases monotonically from zero at the wall 

to be approximated into the logarithmic profile.

- The turbulence intensity increases rapidly from zero at the wall to a local 

maximum near the wall and then monotonically decreases.

a) Mean velocity b) Turbulence intensity

20.1 Velocities and Energies in Turbulence
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(4) Average kinetic energy of turbulence per unit mass 

∼ average KE of turbulence / mass

(20.9)

(5) Energy density,  

The kinetic energy is decomposed into an energy spectrum (density) vs. 

frequency.

≡ limit of average kinetic energy per unit mass divided by the bandwidth   
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where f = ordinary frequency in cycles per second 

∴ average KE of turbulence / mass = 

(6) Correlation between u', v', and w'

exact correlation = one-to-one correlation

zero correlation = completely independent 

(20.11)
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- In a shear flow in an xy-plane,        is finite, and it is related to the 

magnitude of the turbulent shear stress.
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20.1 Velocities and Energies in Turbulence
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1) Averages of products u

If                          and        are said to be correlated.

If                          and        are uncorrelated.
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[Re] Correlated variables

(20.12)
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2) Correlation coefficient

in which                 = variances

→ perfect correlation (같이움직임) 

→ independent (독립적운동)

[Re] Classification of turbulence

1) General turbulence 

 
1/2

2 2

' '

' '
i j

u u
i j

c
ij

u u





2 2
' , 'i ju u

1ijc  

u v w 

2 2 2
' ' 'u v w  ' ' ' ' ' 'u v v w w u 

0
ij

c  0.45 ~ 0.55for general turbulence
ij

c 

20.1 Velocities and Energies in Turbulence

(20.13)



17/31

2) Homogeneous turbulence

~ statistically independent of the location

3) Isotropic turbulence 

~ statistically independent of the orientation and location of the coordinate 

axes

= constant

∼ uncorrelated 

∼ not coherent structures – small scale eddies
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20.1.2 Measurement of turbulence

∼ measure turbulent fluctuations 

(1) Hot-wire (hot-film) anemometer 

∼ Hot-film is usable in contaminated water. 

~ Change of temperature affects the electric current flow or voltage 

drop through wire. Fine platinum wire (film) is heated electrically by a 

circuit that maintains voltage drop constant.

~ When inserted into the stream, the cooling, which is a function of the 

velocity, can be detected as variations in voltage. 

20.1 Velocities and Energies in Turbulence
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~ Use two or more wires at one point in the flow to make simultaneous 

measurements of different velocity components. 

→ After subtracting mean value, rms-values, correlations, and energy 

spectra can be computed using fluctuation.

→ These operations can be performed electronically.

20.1 Velocities and Energies in Turbulence
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(2) Laser Doppler Velocimeter (LDV)

~ use Doppler effect

~ A laser (ultrasonic) beam transmitted into the fluid will be reflected by 

impurities or bubbles in the fluid to a receiving sensor at a different 

frequency.

→ The transmitted and reflected signals are then compared by 

electronic means to calculate the Doppler shift which is proportional 

to the velocity.

~ non-intrusive sensing (immersible LDA)

~ sampling frequency is up to 20,000 Hz

doppler source

V
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C
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20.1 Velocities and Energies in Turbulence
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20.1 Velocities and Energies in Turbulence
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(3) Acoustic Doppler Velocimeter (ADV)

~ use Doppler effect of sonic wave

~ intrusive sensing

~ sampling frequency = 25-50 Hz

20.1 Velocities and Energies in Turbulence
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(4) Particle Image Velocimetry (PIV)

~ use Laser and CCD camera

~ measure flow field at once

~ sampling frequency = 30 Hz

20.1 Velocities and Energies in Turbulence
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PIV system

particle

displacement

Cross-

correlation

frame 1

frame 2

Interrogation

region

Interrogation

region

Crosscorrelation

Vector field

20.1 Velocities and Energies in Turbulence
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Velocity measurement using PIV system

Velocity fields near ogee weir PIV measurement

20.1 Velocities and Energies in Turbulence
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a) Image b)Velocity             c)Turbulence Intensity

b) Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002)

20.1 Velocities and Energies in Turbulence
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LDV:  single point measurement

PIV:  field measurement 

20.1 Velocities and Energies in Turbulence
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[Re] Reynolds rules of averages:  Schlichting (1979) Boundary-Layer 

Theory

Let f and g are two dependent variables whose time mean values are to be 

found. s is any one of the independent variables  x, y, z, t. 
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to another independant variable

f f

s s


 
 

  



f ds f ds 

20.1 Velocities and Energies in Turbulence



29/31

20.2 Continuity for Turbulent Motion

Continuity equation for incompressible fluid

(A)

Substitute velocity decomposition into (A)

(20.14)

(B)

20.2.1 Continuity equation for turbulent motion
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Take time-averages of each term of (B)

Substitute (20.15) into (B)

(20.16)

→ Both mean-motion components and the superposed turbulent-

motion components must satisfy the continuity equation. 

→ Continuity must be satisfied for both turbulent and laminar motions.
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20.2 Continuity for Turbulent Motion
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[Re] Continuity Eq. for compressible fluid 

Time averaging yields
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20.2 Continuity for Turbulent Motion

(20.17)


