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20.1 Velocities and Energies in Turbulence

20.2 Continuity for Turbulent Motion

Objectives

- Learn fundamental concept of turbulence

[ - Study Reynolds decomposition ]

- Derive Reynolds equation from Navier-Stokes equation

- Study eddy viscosity model and mixing length model
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20.1. 1 Reynolds decomposition

(1) Velocity decomposition
- The variables in a turbulent flow are described using the theory of

stochastic process and random variables even though fluid-dynamic

turbulence is not entirely random.

- instantaneous velocity = time-averaged value + fluctuating components

u.(x,y,z,t) =u.(x,y,z) +u/(x,y,z,t)  (20.1)

— T
W= Wat(20.2)
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7= long time compared to the time scale of the turbulence

- T should include (smooth out) all the effects of turbulence fluctuation

- pipe flow: 1077109 s; channel/river flow: 1077102 s

[Re] Integral time scale, 7,

- Time over which a turbulent fluctuation is correlated with itself

- A measure of the memory of the turbulence

1.00
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| u?

0.00

(20.3) Time. 7 ¢ (min)




a/31
20.1 Velocities and Energies in Turbulence

g

[Re] Averaging of stationary vs nonstationary turbulence

1) Stationary turbulence

u A
- Use time average of a single time series
"M"’.\J/\—r"\_r-—’\/"'\r—
data
=—j udt (20.4) s o
2) Nonstationary turbulence a»‘
- Use ensemble average of Nindependent
realization of time series data \k\/\
(u)=lim— Zu (20.5) . -
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= Ensemble average of nonstationary turbulence

n=1l N=2
u u
n=2 N=4
n=3 N=8
— N—w»
n=4 _ = time average, Ar=1/10
!
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u'= joTu dt =0 (" fluctuations are both plus and minus)  (20.6)

1
=

[%H(u-ﬁ)dt:ﬁ-ﬁ:Oj

(2) Pressure and stress decomposition

Ojj :G_ij+o-'ij (20.7)
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(3) Turbulence intensity - show turbulence effects

— root-mean-square (rms) = square root of variance = standard deviation

- average intensity of the turbulence = rms of v’

1
Tl =g =+yu? = { % jOTu'Zdt }2 (20.8)

u|2

 Relative Turbulence Intensity (RTI) = -

v, (or vy)
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[EXx] Actual velocity records obtained at two depths in the open channel
flow (stationary turbulence)
- The time-averaged velocity is greater farther from the wall, but the

turbulence intensity is significantly larger near the wall.
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- The time-averaged velocity increases monotonically from zero at the wall

to be approximated into the logarithmic profile.

- The turbulence intensity increases rapidly from zero at the wall to a local

maximum near the wall and then monotonically decreases.
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(4) Average kinetic energy of turbulence per unit mass

~ average KE of turbulence / mass

1 12 12 12 1 H 1 2
TKE= 2 (u”+v?+w?) = EZ (intensity) (20.9)

(5) Energy density, #(f)

The kinetic energy is decomposed into an energy spectrum (density) vs.

frequency.
= limit of average kinetic energy per unit mass divided by the bandwidth Af

i average KE /mass contained in Af _ oKE (20.10)

1) =1, Af of
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where f= ordinary frequency in cycles per second

0 1 : : :
-. average KE of turbulence / mass = |, #(f)df = S v w)

(6) Correlation between v/, v, and w'
exact correlation = one-to-one correlation

zero correlation = completely independent

v = (20.11)

=0 uncorrelated

— 1T { # 0 correlated
—_[ u'v'dt
T Jo
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- In a shear flow in an xy~plane, u'v' is finite, and it is related to the

maghnitude of the turbulent shear stress.

] 1 Y
7. =—puUVv
tur p T Turbulent shear
Turbulent stresses
shear
n
Buffer %:
layer . .
A wallo -
Laminar
|—-E:" sublayer | >u
Laminar _ /

sublayer
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[Re] Correlated variables

1) Averages of products v

u'uj :(u_i+ui ')(u_j_l_ujl)

1
—uu+uu+3(u/ %

=UuU.Uu. +U.'u." (2012)

If uw'u'20- u' and vu;" are said to be correlated.
|

u,'=0— u'and u;"are uncorrelated.
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2) Correlation coefficient

= (F,F)m (20.13)

in which  u? u,?=variances

¢, = +1 — perfect correlation (20| 22/ Q)

¢, =0 _ independent (%Eul&ll _E_%) ¢; = 0.45~ 0.55forgeneralturbulence
[Re] Classification of turbulence

1) General turbulence
u=+Vv=+Ww

u” = v'? = w* u'v' = v'w' = w'u'
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2) Homogeneous turbulence

~ statistically independent of the location

(ui'ujl)a ::(ui|uj.)b
3) Isotropic turbulence
~ statistically independent of the orientation and location of the coordinate

axes

u?=v"”=w" = constant

u'vi=v'w'=w'u'=0

~ uncorrelated

~ not coherent structures - small scale eddies
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20. 1.2 Measurement of turbulence

~ measure turbulent fluctuations
(1) Hot-wire (hot-film) anemometer
~ Hot-film is usable in contaminated water.

~ Change of temperature affects the electric current flow or voltage

drop through wire. Fine platinum wire (film) is heated electrically by a
circuit that maintains voltage drop constant.

~ When inserted into the stream, the cooling, which is a function of the

velocity, can be detected as variations in voltage.
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~ Use two or more wires at one point in the flow to make simultaneous

measurements of different velocity components.

— After subtracting mean value, rms-values, correlations, and energy

spectra can be computed using fluctuation.

— These operations can be performed electronically.

Gold Plating Defines g =
Sensing Length

/’A

0.040 inches . )
(1.0 mm) "(

Gold Plated
Stainless Steel Supports

Quartz Coated Platinum
Film Sensor on Glass Rod
(0.002 inches Dia.)
(0.051 mm Dia.)
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(2) Laser Doppler Velocimeter (LDV)

~ use Doppler effect
~ A laser (ultrasonic) beam transmitted into the fluid will be reflected by

impurities or bubbles in the fluid to a receiving sensor at a different

frequency.
— The transmitted and reflected signals are then compared by

electronic means to calculate the Doppler shift which is proportional

to the velocity.

~ non-intrusive sensing (immersible LDA)

~ sampling frequency is up to 20,000 Hz

Foo—f Y

doppler

source o~
C




21/31
20.1 Velocities and Energies in Turbulence

g

Transmitter Lens
Beamsplitter * Droplet

[E

Probe Volume

Photo detectors
Frequency and Phase

Signal Processor for velocity & size
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(3) Acoustic Doppler Velocimeter (ADV)
~ use Doppler effect of sonic wave
~ intrusive sensing

~ sampling frequency = 25-50 Hz
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(4) Particle Image Velocimetry (PIV)
~ use Laser and CCD camera

~ measure flow field at once

~ sampling frequency = 30 Hz

Laserlight sheet

» Two Continuum Minilite Nd-YAG Lasers

» Kodak Megaplus ES 1.0 CCD Camera

» Seeded With Hollow Glass Spheres

» Time of Acquisition: (30Hz; for 22 seconds)
» Using INSIGHT Software for PIV Processing

Flowplane
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PIV system
Interrogation
region
R Interrogation
= region ©
framel | ° j =’
[— .' > . |' = A
.:'_.'.¢‘ ...". CrOSS_ i \
¥ ¢ * el » . |
" e e correlatio o
) S R particle
= displacement

Crosscorrelation

\ector field
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Uelomfy measarement using PTV sysfem

Mono 10bit PIV particle video acquisition Video frame extraction Correlation analysis using FFT Acquisition of velocity vector using
displacement analysis
Frame A(f) R(s,t)=F*(F"(f)F(9))
1
Frame B(g)

i .

Velocity fields near ogee weir PIV measurement

Mirror for laser reflection
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Y {mm)
Y mm

X {mm)

a) Image b)Velocity c) Turbulence Intensity

Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002)
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LDV: single point measurement

— =

PIV: field measurement
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[Re] Reynolds rules of averages: Schlichting (1979) Boundary-Layer

Theory
Let fand g are two dependent variables whose time mean values are to be

found. sis any one of the independent variables x, y, z, .

—|

f=

f+rg=f+g

g=T-g
since time averaging is carried out by integrating over a long

Z—fz (Z—f — | period of time,which commutes with differentiation with respect
S 05

to another independant variable

jfds:j?ds
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20.2. 1 Continuily equation for turbulent motion

Continuity equation for incompressible fluid

ou av oW 0
x oy o (A)

Substitute velocity decomposition into (A)

8(G+u')+a(\_/+v')+a(v_v+w') 0 (20.14)
OX oy 0z

ou 8v aw ou' av' ow'
+ =0

OX 6y 0z ax 8y 0z (B)
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Take time-averages of each term of (B)

ou  ov_ow ay/ o W

OX ay az /éy /92
Lou a(u ) o
S ex ox
ou , ov_ ow _ 0
ox oy o1 (20.15)

Substitute (20.15) into (B)

ou' ov' ow'
+ + =0
ox oy @ (20.16)

— Both mean-motion components and the superposed turbulent-

motion components must satisfy the continuity equation.

~~— Continuity must be satisfied for both turbulent and laminar motions.
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[Re] Continuity Eq. for compressible fluid

op N opu;

ot  OXx

oo +p) , AP +u))
ot OX.

Time averaging yields

0(p+p) , Alp+p)u+u)}

ot OX,
op o 0= -
+ u. + + +p'U")=0
o o P AL )
op

8,0+8,5U+8,5\7+8,5W+i(p,—u,)+a%(ﬁ)+%(p.—w.):0 (20.17)

ot 0oX oy 0z OX




