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Chapter 4 Continuity, Energy, and Momentum Equations

g
Contents

4.1 Conservation of Matter in Homogeneous Fluids
4.2 The General Energy Equation
4.3 Linear Momentum Equation for Finite Control Volumes

4.4 The Moment of Momentum Equation for Finite Control Volumes

Objectives

- Apply finite control volume to get integral form of continuity, energy, and
momentum equations

- Compare integral and point form equations

- Derive the simplified equations for continuity, energy, and momentum

equations
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Particle and Control-Volume Concepts

g

Infinitesimal elements and control volumes

= Each of the observational laws of mass, heat, and momentum transport
may be formulated in the Eulerian sense of focusing attention on a fixed
point in space.

= There are two basic method of arriving the Eulerian equation.

Material method (Particle approach)

Control volume method:

v" Finite control volume
v' Differential control volume

If fluid is considered as a continuum, end result of either method is

identical.
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Particle and Control-Volume Concepts
e EEEEEmmm———, e

» Material method (Particle approach)
 Describe flow characteristics at a fixed point (x, y, 2) by observing

the motion of a material particle of a infinitesimal mass

« Laws of conservation of mass, momentum, and energy can be
stated in the differential form, applicable at a point.

e Newton's 2nd law
dF = dma

o Material-particle approach is used to develop a stress-strain

relationship in Ch. 5.
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Particle and Control-Volume Concepts

é

= Control volume method
@ Finite control volume — arbitrary control volume

@ Differential (infinitesimal) control volume — parallelepiped control volume

[Re] Control volume

- fixed volume which consists of the same fluid particles and whose

bounding surface moves with the fluid
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Particle and Control-Volume Concepts
e EEEEEmmm———, e

=  Finite control volume method

Frequently used for 1D analysis (Ch. 4)
Gross descriptions of flow

Analytical formulation is easier than differential control volume

method

Integral form of equations for conservation of mass, momentum, and

energy

Continuity equation: conservation of mass

J‘cvaa_{:dv +<ﬁcqu.d'&:0
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Particle and Control-Volume Concepts

System boundary
at time r+dr
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=

Control surface and
system boundary
at time ¢
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Particle and Control-Volume Concepts

é

= Differential control volume method
e Concerned with a fixed differential control volume (=AxAyAz)
of fluid
e 2D or 3D analysis (Ch. 6)

AF = %(Ama) - %(prAyAza)

e AX, Ay, Az become vanishingly small

* Point form of equations for conservation of mass, momentum,

and energy
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-Volume Concepts

Particle and Control
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4.1 Conservation of Matter in Homogeneous Fluids
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Control surface
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time ¢
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dA, - perpendicular
to the control
surface«

qrdA, is | negative
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4.1 Conservation of Matter in Homogeneous Fluids
—

4.1.1 Finite control volume method-arbitrary control volume
« Consider an arbitrary control volume
» Although control volume remains fixed, mass of fluid originally enclosed

(regions A+B) occupies the volume within the dashed line (regions B+C).

e Since mass m is conserved:

(mA)t + (mB)t -

(mB )t+dt - (mB )t (mA)t B (mC )t+dt (4.2)

(mB )t+dt T (mC )t+dt (4 1 )
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4.1 Conservation of Matter in Homogeneous Fluids
—

* LHS of Eq. (4.2) = time rate of change of mass in the original control

volume in the limit

(mB)t+dt B (mB)t ~ a(mB) — g
dt “ o alePW) 49

where dV = volume element

* RHS of Eq. (4.2)

= net flux of matter through the control surface

= flux in — flux out

= [ pa,dA - [ pg, dA,
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4.1 Conservation of Matter in Homogeneous Fluids
—

where Y, = component of velocity vector normal to the surface
of CV = |j| cos¢
0

TS L(pdv) = | _pa,dA - | pa,dA, (4.4)

% Flux (= mass/time) is due to velocity of the flow.

* \Vector form is

0

~ o (PAV) ==¢_ pd-dA (4.5)
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4.1 Conservation of Matter in Homogeneous Fluids
—

where dA = vector differential area pointing in the outward direction over

an enclosed control surface

G-dA = |g| [dA| cos¢

positive for an outflow from cv, ¢ < 90°

negative for inflow into cv, 90° < ¢ < 180°

If fluid continues to occupy the entire control volume at subsequent times

— time independent

. 0 op
LHS: Ecv(pdV): v (4.53)

Cv at
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4.1 Conservation of Matter in Homogeneous Fluids
—

Eq. (4.4) becomes

op 5. di —
Jou o OV + G0 0A=0 (46

— General form of continuity equation— Integral form

[Re] Differential form

Use Gauss divergence theorem

oF
J,5oav = [, FdA
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4.1 Conservation of Matter in Homogeneous Fluids
—

Transform surface integral of Eq. (4.6) into volume inteqgral

@cqu.dA: CVV-(pC])dV

Then, Eq. (4.6) becomes

., {%—fw.(pq )}dv =0 (4.6a)

Eq. (4.6a) holds for any volume only if the integrand vanishes at every point.
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4.1 Conservation of Matter in Homogeneous Fluids
—

Simplified form of continuity equation

» Steady flow of a compressible fluid

j a—'Odv= 0
CV@t

Therefore, Eq. (4.6) becomes

Cﬁcqu»°dA =0 (4.7)

» Incompressible fluid (for both steady and unsteady conditions)

p = const. — a—'O:O,d—'O:O

ot dt
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4.1 Conservation of Matter in Homogeneous Fluids
—

Therefore, Eq. (4.6) becomes

¢ G-dA =0 (4.8)
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4.1 Conservation of Matter in Homogeneous Fluids
—

[Cf] Non-homogeneous fluid mixture
» Conservation of mass equations for the individual species
— Advection-diffusion equation

= conservation of mass equation + mass flux equation due to advection

and diffusion

oC
+ =0 = — D—
ot OX g=uc-D OX
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4.1 Conservation of Matter in Homogeneous Fluids

4.1.2 Stream - tube control volume analysis for steady flow

o Steady flow: There is no flow across the
longitudinal boundary of the stream tube.

 EqQ. (4.7) becomes

$pa-dA = - pgdA + p,q,dA, =0

pqdA = const. (4.9)
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4.1 Conservation of Matter in Homogeneous Fluids ~

é

If density = const.
g,dA = g,dA, = dQ (4.10)

where dQ = volume rate of flow

» For flow in conduit with variable density

[ adA .
V = . — average velocity

| pd |
— average density

SN
PVIA = p, VLA, (4.11)
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4.1 Conservation of Matter in Homogeneous Fluids
—

= For a branching conduit

_.“AiplqldAi + jAzpzqszz + J‘Asp?,quﬁg =0

PVIA = PN A, + p VG A, (4.12)

Fio—k
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4.1 Conservation of Matter in Homogeneous Fluids
—

€ Equation of Continuity

Use Infinitesimal (differential) control volume method

= At the centroid of the control volume,

p,u, v, w
4 -
T
= rate of mass flux across the surface il e D
i - o T g, o
perpendicular to x is S
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4.1 Conservation of Matter in Homogeneous Fluids

é

flux in={pu — G(pu) dX}dydz

ox 2
flux out:{pu + o(pu) dX}dydz

ox 2

0
net flux = flux in — flux out = —%dxdydz
X
net mass flux across the surface perpendiculartoy = —Mdydxdz
net mass flux across the surface perpendiculartoz = — 5(§W) dzdxdy
z
0 ( pdxdydz)

Time rate of change of mass inside the c.v. =

ot
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4.1 Conservation of Matter in Homogeneous Fluids

é

Time rate of change of mass inside = sum of three net rates

8(pdxdydz):_ 0(pu) N o(pv) n o(pw) dxdydz
ot Ox oy oz

By taking limit dV' = dxdyadz

_op _9pu) | AlpY) | OAW) g giv (o)

ot OX oy 0z

op _

— + V. =0

ot Pq (A1)

— point (differential) form of Continuity Equation (the same as Eq. 4.6b)
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4.1 Conservation of Matter in Homogeneous Fluids

o(pu) , 9(pv) . o(pw) S = div (
Re _— 4 = V = d|V
Re] —>— + Py ~ Jolo (p0)
By the way,

V-pq =4 -Vp+pV-q

Thus, (A1) becomes

P 4+ qVp+ pV-q=0 (A2)
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4.1 Conservation of Matter in Homogeneous Fluids
—

1) For incompressible fluid

dt
op . dp
- —+-Vp=—=0
ot 0P T
Therefore Eq. (A2) becomes
pV-G=0 — | V:-G=0 (A3)
In scalar form,
9, 8v ow
4 a = 0 (A4)
OX 8y oz

— Continuity Eq. for 3D incompressible fluid
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4.1 Conservation of Matter in Homogeneous Fluids
—

For 2D incompressible fluid,
a_u + @ — O
ox oy

2) For steady flow,

%P _ g
ot

Thus, (A1) becomes

V.-p(d =4G-Vp+pV:-G=0 (4.13)
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4.2 The General Energy Equation
EEEE——————————

4.2.1 The 1st law of thermoadynamics

* The 1st law of thermodynamics:

The difference between the heat added to a system of masses and the

work done by the system depends only on the initial and final states of the

system (- change in enerqgy).

— Conservation of energy
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4.2 The General Energy Equation

é

Q W
5Q — SW = dE (4.14)

where 6Q = heat added to the system from

surroundings

oW= work done by the system on its surroundings

oF = increase in energy of the system
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4.2 The General Energy Equation
EEEE——————————

[Re]

« property of a system: position, velocity, pressure, temperature, mass,

volume
« state of a system: condition as identified through properties of the

system

Consider time rate of change

5Q oW dE

(4.15)

dt  dt  dt
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4.2 The General Energy Equation

é
= Work

W ressure = WOrk of normal stresses acting on the system boundary
W....r, = work of tangential stresses done at the system boundary
on adjacent external fluid in motion
W...» = shaft work done on a rotating element in the system
= Energy
Consider e = energy per unit mass = £/mass

e, = internal energy associated with fluid temperature = v

e,= potential energy per unit mass = gh

where A = local elevation of the fluid

q2

é€,= kinetic energy per unit mass = Py
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4.2 The General Energy Equation
EEEE——————————

u -+ P = enthalpy
Yo,
q2
e=eu+ep+eq:u+gh+7 (4.16)

* Internal energy
= activity of the molecules comprising the substance

= force existing between the molecules

~ depend on temperature and change in phase
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4.2 The General Energy Equation
EEEE——————————

4.2.2 General energy equation

5Q W dE
dt  dt dt (4.15)

Consider work done

oW _ évvpressure _I_é\Nshaft +é\Nshear (4.15a)

dt dt dt dt

é\A/pressure ] . THE GENERAL ENERGY EQUATION
di = net rate at which work of pressure is @

done by the fluid on the surroundings

= work flux, — work flux;,

= ¢, p(q-dA)
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4.2 The General Energy Equation
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4.2 The General Energy Equation

p = pressure acting on the surroundings = F/A = F/L?

positive for outflow into CV

G-dA =
negative for inflow
-dA=Q=L%/t
. FL
g - =———=FL/t=E/t
p(g-dA) o

Thus, (4.15a) becomes

oW = AN é\Nsa éV\/sear
o = o P(a-dA)+ — =2 (4.15b)
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4.2 The General Energy Equation
EEEE——————————

Now, consider energy change term

e total rate change of stored energy

= net rate of enerqgy flux through C.V.

+ time rate of change inside C.V.

0

- Csep(q.dA) + E CV(e,odV) (4.15¢c)

e=E/mass; p(g-dA)=mass/time

ep(q-d,&):E/t
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4.2 The General Energy Equation
EEEE——————————

Substituting (4.15b) and (4.15c) into Eq. (4.15) yields

& B é\Nshaft _ é\Nshear _ CﬁCS p(qu’)

dt dt dt
= ep(*-dA) + 9 (epaV)
CS g ot Jcv £
5Q _ é\Nshaft . é\Nshear (4.16)
dt dt dt
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4.2 The General Energy Equation
—_— e aa

Assume potential energy e, = gh (due to gravitational field of the earth)

2

Then e:u+gh+q7

Then, EqQ. (4.17) becomes

_ p 0 ) (a2 o) L O
= CS(;+u+gh+7]p(q-dA)+ajCV6pdV (4.17)
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4.2 The General Energy Equation
EEEE——————————

= Application: generalized apparatus

At boundaries normal to flow lines — no shear

_)Wshear =0 (418)

5Q é\Nshaft p q2 — ry a
- < _ = Sy h + — : + — | epdV 4.19
- = @Cs(p +u+gh+ p(g-dA) po | er (4.19)

For steady motion,

o) éVvsa 2 A
Q _ L Cﬁcs(% + U+ gh + q?]p(q’.dA) (4.20)




41/87

4.2 The General Energy Equation

Control surface Control volume (2)

|
i
I
I '
confining fAuid : ' : '
t time ¢ e i 1 Confine of fluid
i i e i at time {4di
. | W7z 7
E Y

Wahatt FIG, 4-5. Control vo
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4.2 The General Energy Equation
EEEE——————————

» Effect of friction

)

» This effect is accounted for implicitly.

* This results in a degradation of mechanical energy into heat which may

be transferred away (@, heat transfer), or may cause a temperature

change — modification of internal energy.

 Thus, Eq. (4.20) can be applied to both viscous fluids and non-viscous

fluids (ideal frictionless processes).
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4.2 The General Energy Equation

4.2.3 1 D Steady flow equaftions

For flow through conduits, properties are uniform normal to the flow direction.

— one-dimensional steady flow

5Q . éVvshaft _
: 2 dt dt
() " %:}VE CJ‘)CS(U +%+ gh _|_q_22jp(q’d,&)

Integrated form of Eq. (4.20) = @ - @D

SW 2 2
@_ Shaﬁ:|:u+£+gh+v_:| pQ—|:U+£+gh+V7:| ,OQ
©® @

p 2 p
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4.2 The General Energy Equation
EEEE——————————

2
where 7 = average Kinetic energy per unit mass

Sectionl: Lp (q-d,&) = — pQ = mass flow rate into CV

Section 2: Lp (q’-d,&) = pQ = mass flow from CV
M = pQ dt

Divide by pQ (masstti

p P

W 2 2
shaf ={u+£+gh+v—} —{U+£+gh+v—}
2 Iy 2y
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4.2 The General Energy Equation
EEEE——————————

Divide by ¢
W 2 2
heattl_ransfer_ shat__ £+£+h+v_ B £+£+h+v_
weight weight g v 29 |, g v 29 |,
(4.21)

= Energy Equation for 1-D steady flow: Eq. (4.21)
e use average values for p, 7, A, u, and Vat each flow section

» use K (energy correction coeff.) to account for non-uniform

velocity distribution over flow cross section
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4.2 The General Energy Equation
EEEE——————————

2
K. gv ‘Q = qude ---- kinetic energy/time = %mv
[£q7dQ
K, = —2 > 1 (4.22)
P2
=V
) Q
W 2 2 _
heat transfer _ Wawy {£+ - Kev_} B {£+ - Kev_} LUy
weight weight y 29 |, y 29 | g
(4.23)

K, = { 2, for laminar flow (parabolic velocity distribution)

1.06, for turbulent flow (smooth pipe)
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4.2 The General Energy Equation
———————————————————————————————

For a fluid of uniform density y

i 2 W -
p1+h1+KV p2+h LK V, o Wt {heattransferJruz u, }

¥ “29 229  weight weight g

(4.24)

— unit: m (energy per unit weight)

For viscous fluid;

_ heat transfer LUy
weight g -

— loss of mechanical energy

~ irreversible in liquid
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4.2 The General Energy Equation

é
Then, Eq. (4.24) becomes
2 2
I01+hl+KV p2+h + K, V—+AH + AH| (4.24a)
y "2y * 29

where 4H,, = shaft work transmitted from the system to the outside

H, = H, + AH,, + AHLl_2 (4.24b)

where H,, H,= weight flow rate average values of total head
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4.2 The General Energy Equation
EEEE——————————

*+ Bernoulli Equation

Assume

@ ideal fluid — friction losses are negligible
® no shaftwork - AH,, = 0

® no heat transfer and internal energy is constant - AH L, = 0

P Vi _ P,
+h + K, +h, + K, 4.25
y “29 ¥ 9 (4.29)

H =H,
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4.2 The General Energy Equation

If K,,=K_, =1, then Eq. (4.25) reduces to

work L Potential head
\Pressure head
\ Velocity head
/

H:&+h1+_:%+h2+— (4.26)

~ total head along a conduct is constant
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4.2 The General Energy Equation
EEEE——————————

= Grade lines

1) Energy (total head) line (E.L) ~ H above datum

2) Hydraulic (piezometric head) grade line (H.G.L.)

= (E + hjabove datum

/4

For flow through a pipe with a constant diameter

2 2
vV, =V, - VL:VL
29 29




&2/87

4.2 The General Energy Equation
EEEE——————————

—

THE GENERAL ENERGY EQUATION

_J: ' - o __ Datum | _
p/Y+h=Dpiezometric head
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4.2 The General Energy Equation
EEEE——————————

1) If the fluid is real (viscous fluid) and if no energy is being added, then

the energy line may never be horizontal or slope upward in the direction

of flow.

2) Vertical drop in energy line represents the head loss or energy

dissipation.
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4.3 Linear Momentum Equation for Finite Control Volumes
é

4.3. 1 Momentum Principle

The momentum equation can be derived from Newton's 2nd law of

motion

- dg d(md) d™
F=ma=m—= =

dt  dt dt (4.27)
M = linear momentum vector =mg

F = external force

= ( boundary (surface) forces: r normal to boundary - pressure, pr
tangential to boundary - shear, F

| body forces - force due to gravitational or magnetic fields, F,
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4.3 Linear Momentum Equation for Finite Control Volumes

#

F +F + F = —

Ifb = ICV f, (p dv), where f, = body force per unit mass

(4.28)
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4.3 Linear Momentum Equation for Finite Control Volumes

4.3.2 The general linear momentum equation .. ..

Consider change of momentum

\
I 3 ( N\
H A
- ]
dd, |y - /42 / .
<] dd, ”/ qgdA, is | Positive

d M FIG. 4-1. Flow through a finite control
K volume of arbitrory shape.

Pl = {otal rate of change of momentum ik, is| Negative

= net momentum flux across the CV boundaries

+ time rate of increase of momentum within CV

_Gp(g-dA) ICV Gpdv (4.29)

where do(g-dA)= momentum flux = velocity x mass per time

dA = vector unit area pointing outward over the control surface
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4.3 Linear Momentum Equation for Finite Control Volumes

Confine of Auid at
-,r_____..-timﬂ [4dl

Control surface
confining flid at
time |

- ' > \
t‘ 4 .r.rqz 'I
& . 4 T
; dd, ' 27 apdAy s Positive

-

FIG. 4-1. Flow through a finite control
velume of arbitrary shape.

q,dA, is | Negative
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4.3 Linear Momentum Equation for Finite Control Volumes

g
Substitute (4.29) into (4.28)

_ ~ - o = 0 _

F,+ F +F = stcsqp(q-dA) + EJCVCI,OdV (4.30)
For steady flow and negligible body forces

F,o+ F = Cﬁcﬂp(ﬁ-dA) (4.31)
= Eq. (4.30)

» |tis applicable to both ideal fluid systems and viscous fluid systems

involving friction and energy dissipation.

« Itis applicable to both compressible fluid and incompressible fluid.




99/87
4.3 Linear Momentum Equation for Finite Control Volumes

é

 Combined effects of friction, energy loss, and heat transfer appear

implicitly in the magnitude of the external forces, with corresponding

effects on the local flow velocities.

« Knowledge of the internal conditions is not necessary.

 We can consider only external conditions.
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4.3 Linear Momentum Equation for Finite Control Volumes

#

4.3.3 Inertial control volume for a generalized apparatus

* Three components of the forces
.= ~ I 0
x—dir.: F, +F, +F, = SBCS up(g-dA) + ELV updv

A = =\ O
y—dir.: pr+Fsy+Fby:chCSVp(q-dA)JrajCVVpdV

=
N
w
N

- = .\ O
z—dir.:F, +F +sz:cj'>CSWp(q-dA)+EJ'CVWpdV (4.32)
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4.3 Linear Momentum Equation for Finite Control Volumes

= For flow through generalized apparatus

2 = = 0
X—dir.: pr+st+Fbx:L“de_LUPdQ +5LV updVv

 For 1D steady flow,

. ///W///////% Contne of fud
i A \\ ~
/4

0 J- | :
—| gpdV =0 | 7
y A Yy
ot Jcv Control surface 4 {/{/--«: N/
confining fluid '

at time ¢

Control volume
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4.3 Linear Momentum Equation for Finite Control Volumes

» Velocity and density are constant normal to the flow direction.
x—dir.: F +F +F =) F,=(V,pQ),—(V,0Q),

= Vprz Q, - VxlplQl - Qp(vxz ) Q'O( Xout -V ”)

y— dir.: ZFYZ(VV'OQ)Z_(VWOQ)l PQ = p,Q, = Qp (412)

Confi f fiuid

z—dir.: ) F,=(V,0Q),—(V,0Q), s

where /= average velocity in flow

direction
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4.3 Linear Momentum Equation for Finite Control Volumes

é

* Non-uniform velocity profile

If velocity varies over the cross section, then introduce momentum flux

coefficient

=

[dp (g-dA) = K,V (pVA)

STl

Jar dQ = K,V pQ

e
VpQ
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4.3 Linear Momentum Equation for Finite Control Volumes

———————————————————————————————————————————————————
where
V= magnitude of average velocity over cross section = /A
V = average velocity vector
K.,,= momentum flux coefficient = 1
= { 1.33 for laminar flow (pipe flow)

1.03-1.04 for turbulent flow (smooth pipe)

ZFX = (KmVXIOQ)g o (KmVXIOQ)l
ZFY - (KmVpr)2 B (KmVV'OQ)l
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4.3 Linear Momentum Equation for Finite Control Volumes

#

[Cf] Energy correction coefficient

Jo,
« - _[qudQ

e

p_>
2V
5 VQ
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4.3 Linear Momentum Equation for Finite Control Volumes

g

[Example 4-4] Continuity, energy, and linear momentum with unsteady flow

A large tank mounted on rollers is
filled with water to a depth of 16 ft
above a discharge port. Attime £=

0, the fast-acting valve on the

Water surface

discharge nozzle is opened. S0 ST 2l S 0
' == Control -
: . L volume ™ 1 90 12
Determine depth A, discharge rate R N A aiZid e
*o . Water surface | ho=16 1t
@, and force F necessary to keep |t =50 seo
: y ! o
the tank stationary at = 50 sec. _’Eﬁ R . *‘;—) -,
M oo o '(2)

A
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4.3 Linear Momentum Equation for Finite Control Volumes

é

Continuity, energy, and linear momentum equations

op . dA —
(4.6) ICVEdV +<j>cqu-dA_o

(4.17) ) " ) 3
CS(— + U+ gh+ 7)p(q.dA) + E.[cv epdV

. - R N
(4.30) F, + F +F =¢ do(q-dA) + chvquv
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4.3 Linear Momentum Equation for Finite Control Volumes

é

1) Use integral form of continuity equation, Eq. (4.6)
0
chvpdv :qundAi_IpqndAZ
dv = Adh, pq,dA = 0 (because no inflow across the Section 1)

O ¢h
pA—[ dh =—pVA

dh
A = Vo ®)

ii) Energy equation, Eq. (4.17)

~ no shaft work

~ heat transfer and temperature changes due to friction are negligible
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4.3 Linear Momentum Equation for Finite Control Volumes

g o s

_ 4" (5 0
= CS(;+ u+ gh +?j,o(q-dA) + a_.-cvepdV

2

9

e = energy per unit mass =U + gh + >

2

| = @Cs[u + 24 gn +q7]p(q-d,5\)

o,

2

2
=(u+£+gh+q—j szAz—(u+£+gh+q—] PV, A
o, 2 ), o, 2 ),
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4.3 Linear Momentum Equation for Finite Control Volumes

g

2
=(u+£+gh+q—j oV, A, (V, = 0)
p 2 ),

9 q
SV = 4 CV[u - oh+ g]PdV\

" nearly constant in the tank

A dh

except near the nozzle

O ¢h
= Aipﬁjo (u + gh)dh

.0 = £u+£+gh+q—]pVA2 Aip j(u+gh)dh
Jo, 2
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4.3 Linear Momentum Equation for Finite Control Volumes

é

Assume p =const., p,= p,, =0, h, =0 (datum)

2
0 = uv,A + V—ZVZAZ + uAiﬁ + Aﬁghﬁ (B)
2 dt \ dt\
dh
Substitute (A) into (B) A&E ==V, A
V2
0 :M+72V2A2 + U(EA) + gh(-V,A,)
V2
72V2A2 = ghV, A,
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g
Substitute (C) into (A)

AZgh = -A T

A
o a2l

Integrate
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g

. 01 2(32.2) jz
(JE 20 2

= (4 -0.0201t)°

At t =50sec, h = (4-0.0201x50)" = 8.981t

V, = 2gh = /2(32.2)(8.98) = 24.05 fps

Q, = (VA), = 24.05(0.1) = 2.405 cfs
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i) Momentum equation, Eq. (4.30)/ | / I

pr + FS/ M Fb/ - <jscs;Ci'o(q'd'z‘) T %jcvquv

Il = Time rate of change of momentum inside CV is negligible

if tank area (A ) is large compared to the nozzle area (A,).

1= ¢ _dp(d-dA) = [a,00,0A, - [g.pa@A = V,pV,A
S By =VopVL A, =V, 0Q,

F. =(24.05)(1.94)(2.405) = 112 Ib
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4.4. 1 The Moment of momentum principle for inertial reference systems

' M
Apply Newton's 2nd law to rotating fluid masses L

— The vector sum of all the external

moments acting on a fluid mass (FxF) -
equals the time rate of change of the

moment of momentum (angular

momentum) vector (FxM ) of the fluid

mass.

Example: rotary lawn sprinklers, ceiling

fans, wind turbines
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‘«-\—Cmtml volume

b
\;— Section (2)

\
\
\
|
!

— ——
- ]
P = =]

1 1
rat
=3
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L o= d =
T =rxF = E(er) (435)

where [ = position vector of a mass in an

arbitrary curvilinear motion

—

M = linear momentum ﬂ
y r
o/ ‘
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g
[Re] Derivation of (4.35)

v

Eq. (4.27): F = ——
q. (4.27) m

Take the vector cross product of I’

FxF = fxd—M
dt
By the way,
i(F><I\7I>) :d—er + de—M
dt dt dt
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~ dr
| =—xM =dxmg=0 |- —=0§
| | ( dt j
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é
[Re] Torque T = Fx F

 translational motion -

Force — linear acceleration

e rotational motion -

Torque — angular acceleration 0,
[Re] Vector Product "

flg_05_05

—_

V =axb
Magnitude = /| = |a]x|p|siny = area of parallelogram

direction = perpendicular to plane of & and b — right-handed triple
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a
éx(6+6) = (éxﬁ) + (éxlg)
» External moments arise from external forces

d -

(Fxlfp)—i—(Fxlfs)+(fxlfb)=a(Fxl\/l)
fb _~ fs _ - A _I__.p
T+ T+ T, = S (r x M) (4.36)
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4.4.2 The general moment of momentum equation /

d,. = R

E(r M) = C_‘Scs(rxq)p(q dA) + at  (Txd) pdVv

L 5

Tp*t Tt Ty = $o(Fx)p(d-dA) + oo (TxQ)pdv (4.37)
\

=r,q sin(z—a = (rqcosa)
yz Ayz 2 v )

angle between (,, and I,
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é

—

x—dir.: T, +T,+T, = Sﬁcs(rqcosa)yzp(q-dA) (rqcosa) , pdV

+ —
at CcVv

. I 0
y—dir.: T + T, +T, = @Cs(rqcosa)zxp(q.dA) t o (rgcosa), pdVv

: - = - 0
z—dir.: T,+T,+T, = qSCS(rqcosa)xyp(q’.dA) = _ (rgcosa), pdv

(4.38)
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g

Homework Assignment # 4
Due: 1 week from today

4-11. Derive the equation for the volume rate of flow per unit width for the

sluice gate shown in Fig. 4-20 in terms of the geometric variable 6, y;, and
C. Assume the pressure in hydrostatic at y, and c.6 and the velocity is
constant over the depth at each of these sections.

4-12. Derive the expression for the total force per unit width exerted by the

sluice gate on the fluid in terms of vertical distances shown in Fig. 4-20.
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g
4-14. Consider the flow of an incompressible fluid through the Venturi
meter shown in Fig. 4-22. Assuming uniform flow at sections (1) and (2)

neglecting all losses, find the pressure difference between these sections

as a function of the flow rate @, the diameters of the sections, and the
density of the fluid, P. Note that for a given configuration, Q@ is a

function of only the pressure drop and fluid density.

Sl RS, (2)
Sillerme
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g

4-15. Water flows into a tank from a supply line and out of the tank

through a horizontal pipe as shown in Fig. 4-23. The rates of inflow and

outflow are the same, and the water surface in the tank remains a

distance /1 above the discharge pipe centerline. All velocities in the tank
are negligible compared to those in the pipe. The head loss between the

tank and the pipe exitis A, (a) Find the discharge Q in terms of A, A,

and H, (b) What is the horizontal force, F, required to keep the tank

from moving? (c) If the supply line has an area A, what is the vertical

force exerted on the water in the tank by the vertical jet?
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g

4-28. Derive the one-dimensional continuity equation for the unsteady,

non-uniform flow of an incompressible liquid in a horizontal open channel

as shown in Fig. 4-29. The channel has a rectangular cross section of a
constant width, b. Both the depth, y, and the mean velocity, V are

functions of x and t.

Instantaneous water surface
l\

— Yo="Yo(,t)

T 7777777  FIGURE 4-29
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