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Chapter 6 Equations of Continuity and Motion
g

Session 6-3 Motions of viscous and inviscid fluids
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o In Ch. 4, 1st law of thermodynamics — 1D Energy eq.

— Bernoulli eq. for steady flow of an incompressible fluid with zero

friction (ideal fluid)

o |[n Ch. 6, Newton's 2nd law - Momentum eq. —» Eq. of motion (6.4) —

Bernoulli eq.

Integration assuming irrotational flow (6.3)

o |rrotational flow = Potential flow
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6.6. 1 Velocily potential and stream function

If Ax, y, z, t)is any scalar quantity having continuous first and second

derivatives, then by a fundamental vector identity

—curl(grad 9) =V x(Vg)=0 (6.46)

[Detail] vector identity

V¢ = grad ¢_a—ff+%]+ afﬁ
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6.6 Irrotational Motion

6/64

g

By the way, for irrotational flow
Eq.(6.17): Vx({4=0

(A)

Thus, from (6.46) and (A), we can say that for irrotational flow there

must exist a scalar function ¢ whose gradient is equal to the velocity

vector (.

grad ¢ =0

(B)

Now, let's define the positive direction of flow is the direction in which is

decreasing, ¢ then

d=-grad ¢(Xx,y,z,t)=-V¢

(6.47)
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é

where ¢ = velocity potential

— irrotational flow = potential flow for both

0 0 0
u=——¢, v:——¢, w=_2% (6.47a)
OX oy 0z
y
— Velocity potential exists only for P Ly =4y
irrotational flows; however stream function > i z ) zz
> t = W3
is not subject to this restriction. — Ll ds

compressible and incompressible fluids 0=01 ¢=¢
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(1) Continuity equation for incompressible fluid

Eq. (6.5): V-§G=0 (C)

Substitute (6.47) into (C)

. V-(-V¢)=-V¢=0 - Laplace Eq. (6.48)

0°p 0°¢ 0°¢
Vg = 2 +@y2 t =0

< Cartesian coordinates (6.49)

r‘°060° oz°

2 2
V2¢ :——(r a¢j + 1 o9 + ¢ =(0 <« Cylindrical coordinates (6.50)
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[Detall] velocity potential in cylindrical coordinates

o9, _ 0, _ 0

V =——, VH_ =

" or o - oz

(2) For 2-D incompressible irrotational motion

* Velocity potential

a;; (6.51)
V=—2>2
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#

« Stream function: Eq. (6.8)

yo_ v
oy
oy
V=—r
" (6.52)
oy _0¢ |
oy  OX
> — Cauchy-Riemann equation (6.53)
oy __0¢
OX oy |
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6.6 Irrotational Motion
=

Now, substitute stream function, (6.8) into irrotational flow, (6.17)

Eq. (6.17): u_ov «[rotation=0 Vx§=0]
oy OX
2 2 2 2
'.—a"”:aweal/j+aw 0 - Laplace eq. (D)

oF o o oyt

Also, for 2-D flow, velocity potential satisfies the Laplace eq.

o°p ©0°
G+8-0 (E)

ox° oy
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— Both ¢ and w satisfy the Laplace eq. for 2-D incompressible

irrotational motion.

- ¢ and v may be interchanged.

— Lines of constant ¢ and y must form an orthogonal mesh system

- Flow net

= Flow net analysis
Along a streamline, i =constant.

Eq. for a streamline, Eq. (2.10)

- =— (6.54)




13/64
6.6 Irrotational Motion

BTW along lines of constant velocity potential

—>d¢g=0
d¢:%dx+%dy=0 (F)
OX oy
Substitute Eq. (6.47a)
0P /
dy _ /

dx

=734 (6.55)
g=const. Ay
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6.6 Irrotational Motion
=

From Eqgs. (6.54) and (6.55)

dx

dy _dx
dy

dx

(6.56)

y=const. $=const.

— Slopes are the negative reciprocal of each other.

— Flow net analysis (graphical method) can be used when a solution of

the Laplace equation is difficult for complex boundaries.
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y Streamline (y = constant)

™

Equipotential
line Equipotential line
(¢ = constant) (¢ = constant)

3
d;
L
4,
d
i

Streamline
(v = constant)
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= Seepage of earth dam

.........

inpais bod P tqpinllne TR
< 5] Drainage blanket
Equipotential n
ines Q=) AQ=n,KAH =—KH
nd
. n; =number of flowlines;
> AQ n, = number of equipotential lines;
bl| — ‘- ..
Aa K = permeability coefficient (m/s)
it

Flow lines
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6.6 Irrotational Motion
=

Potential flows

1.  Uniform flow
— streamlines are all straight and parallel, and the magnitude of the

velocity is constant

a a 1 g Ly =1, V / e

a_fzu’ %:O i — 4= U/’ \)///<<¢;fs¢4
Y=1ys3 b5 L
V=t S /

¢=Ux+C

\ Y Y VY

|
!
1
|
|
T
|
|
T
!
|
|
!
|

p=¢1 0 =0
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2. Source and Sink
* Fluid flowing radially outward from a line through the origin
perpendicular to the x-y plane

 Let mbe the volume rate of flow emanating from the line (per unit

length)

y = constant o ¢ = constant

(2zr)v. =m X <
m /
V [

— [ < \ 5 !
r 27z-r \\ /\ X
\ /
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If mis positive, the flow is radially outward - source __ ..

0
N // “\\
hN . ~
A <
£ N

If mis negative, the flow is radially inward — sink i T S

SN
w_m 19 L N

= constant

I S

or  2xr'r o6 "
— e
¢p=—-1Inr
27T
v - 1oy m
" ro0 2xr
m v
—— 0 r
v 27
The streamlines are radial lines,

and equipotential lines are concentric circles. .
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3. Vortex (Sec. 6.8)

Flow field in which the streamlines are concentric circles

In cylindrical coordinate

$=Ko
w=-KlInr fxciein
1op oy K

vV, =
r oo or r

The tangential velocity varies

inversely with distance from the

origin. .
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6.6 Irrotational Motion

(a) (b)

Free vortex Forced vortex
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6.6 Irrotational Motion

[Appendix II] Potential flow problem

Find velocity potential ¢

<

- Find - Find flow pattern

Find velocity
}— Find pressure, force
. Find kinetic energy ]

Bernoulli eq.
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6.6.2 The Bernoulll equation for irrolational incompressible fluids

(1) For irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

OW OV
oy oz
ou  ow
07 OX
oV ou

Eq.(6.17): Vx@G=0 > irrotational flow

X 0y
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Eq. (6.28): Navier-Stokes eq. ( x-comp.) for incompressible fluid

o] 1w
2 OX 2 OX
ch 10ap LA o°u L, o°u . o°u
oX p ox plox* oy* oz°
o o°w
OyOX OZOX

gah 10op ya ou 8v 8W
OX p OX pa OX ay 0z

] (6.57)
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Substitute ¢ = ¢#*2*n? and continuity eq. for incompressible fluid into
Eq. (6.57)
Continuity eq., Eq. (6.5): V.=

ou ou ou
+—+—=0
ox oy 0z

Then, viscous force term can be dropped.

ou, o q° __gah_lap -
ot ox| 2 - AES

OX p OX

2
8u+ 2 {qz +gh+£}=0

ot ox Jo,




6.6 Irrotational Motion

N 0|q p
- Eq. + +gh+— =0
y—E( ooy 2 g o (6.58)
- i}
z— Eq. 6W+a d +gh+B =0 (6.59)
ot oz| 2 P

Introduce velocity potential ¢ ox | oy oz

ou 0 oV 0 ow 0
_ P n_ T w_ "

ot atox et ooy’ ot otoz
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Substituting (A) into (6.59) yields

0| 94 & p

- +gh+—1=0 X —Eq.

ox| ot 2 ) P | |
_ , _

_Q__8¢+q +gh+£-:0 y — Eq.

oy| ot 2 P

2
_@{_8¢+q +gh+£}=0 z — Eq. (B)

o 2 o,
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Integrating (B) leads to Bernoulli eq.

op q° P
—+—+gh+—=F(t
Pl (t) (6.60)

~ valid throughout the entire field of irrotational motion

0

For a steady flow; —— =0
ot

—+ gh+-—=const. (6.61)
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— Bernoulli eq. for a steady, irrotational flow of an incompressible fluid

Dividing (6.61) by g (acceleration of gravity) gives the head terms

2

9 P

—— +h+-—=const.
24 y
q1 p1 q2 p2
+h + +h,+—==H 6.62
24 y 29 y (6.62)

H = total head at a point; constant for entire flow field of irrotational motion

(for both along and normal to any streamline)

— point form of 1- D Bernoulli Eq.

p, H, g = values at particular point - point values in flow field
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é
[Cf] Eq. (4.26)

2 2
&+h1+vl p2+h +V—=H

14 29 29

H = constant along a stream tube
— 1-D form of 1-D Bernoulli eq.

P, h, V = cross-sectional average values at each section — average values

» Assumptions made in deriving Eq. (6.62)

— iIncompressibility + steadiness + irrotational motion+ constant viscosity

(Newtonian fluid)
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In Eq. (6.57), viscosity term dropped out because V.g=0 (continuity Eq.).

— Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.

* Viscous flow
Velocity gradients result in viscous shear.

— Viscosity causes a spread of vorticity (forced vortex).

- Flow becomes rotational.

— H in Eq. (6.62) varies throughout the fluid field.

— |rrotational motion takes place only in a few special cases (irrotational

vortex).
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Fluid particles not rotating

Wall Fluid particles rotating

potential flow

32/64

rotational flow
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* Irrotational motion can never become rotational as long as only

gravitational and pressure force acts on the fluid particles (without shear

forces).
— In real fluids, nearly irrotational flows may be generated if the motion is

primarily a result of pressure and gravity forces.

[EX] free surface wave motion generated by pressure forces (Fig. 6.8)

flow over a weir under gravity forces (Fig. 6.9)
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O T,
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 Vortex motion
i) Forced vortex - rotational flow

~ generated by the transmission of tangential shear stresses

— rotating cylinder

i) Free vortex - irrotational flow

~ generated by the gravity and pressure

— drain in the tank bottom, tornado, hurricane
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Forced vortex Free vortex
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* Boundary layer flow (Ch. 8)
1) Flow within thin boundary layer - viscous flow- rotational flow

— use boundary layer theory

ii) Flow outside the boundary layer - irrotational (potential) flow

— use potential flow theory
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6.7 Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline

For inviscid flow

— Assume no frictional (viscous) effects but compressible fluid flows

— Bernoulli eq. can be obtained by integrating Navier-Stokes equation

along a streamline.

Eq. (6.24a): N-S eq. for ideal compressible fluid («=0)

pg - VP+W2/+/§}W/) p—+p (G-V)§

_vp &g
g-~2 = (g-v (6.63)

p ot
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— Euler's equation of motion for inviscid (ideal) fluid flow

ﬁ g=—-gVh

Substituting (6.26a) into (6.63) leads to

Vp A0 . s
—gVh——=—+((q-V
g & (G-V)g (6.64)

/ idx + jdy + kdz

Multiply dr (element of streamline length) and integrate along the streamline

—

_gj Vh-df—j %Vp-dF:j (@—q)-dmj [(G-V)d |-dF+C(t) (6.65)

ot




6.7 Frictionless Flow

By the way,

1 =dr-v =20 gy 20
OX ay 0z




41/84

6.7 Frictionless Flow

Thus, Eq. (6.66) becomes

9 gn e & (%) gro
| p +gh+= +| (atj dr =—C(t) (6.67)

For steady motion, a =0:C (t) > C

ot
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g

dp q° .
j —+gh+ 7 =const. along a streamline (6.68)
Yo,

For incompressible fluids, p = const.

2

L gh +3 —const.
o, 2
Divide by g
Pon 9 -
+h+—=C along a streamline (6.69)
y 29
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— Bernoulli equation for steady, frictionless, incompressible fluid flow

— Eq. (6.69) is identical to Eq. (6.22). Constant Cis varying from one

streamline to another in a rotational flow, Eq. (6.69); it is invariant

throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms

 Bernoulli equations for steady, incompressible flow

1) For irrotational flow

P

2

9

H="+h+ oa = constant throughout the flow field (6.70)
/4 g
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2) For frictionless flow (rotational)

2
H = E +h+ 2— = constant along a streamline (6.71)
/4 9

3) For 1-D frictionless flow (rotational)

V 2
H = P + h + Ke— = constant along finite pipe (6.72)
y 29
4) For steady flow with friction  ~ include head loss A,
2 2
&+h1+q1 :pz+h2+q—2+hL (6.73)

14 29 29
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6.7.3 Applications of Bernoulli's equation fo flows of real fluids
(1) Efflux from a short tube

« Zone of viscous action (boundary layer): frictional effects cannot be

neglected.

* Flow in the reservoir and central core of the tube: primary forces are

pressure and qgravity forces. — irrotational flow

» Apply Bernoulli eq. along the centerline streamline between (0) and (1)

e of visau influesce = F (L) = rotational
d, Fow
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e of visdua inClugsce = B (L) = rotational

2 d,i FHou!

&4_2 _|_q pl-I-Z +CI_1 @J,__ —/

y 29 7 29 Fﬁ

Po = hydrostatic pressure =vyay, Py = Pam —> P1

gage

g, = 0 (neglect velocity at the large reservoir)

2
" g—lg =d, g, =4/29d, - Torricelli’s result (6.74)

If we neglect thickness of the zone of viscous influence

Q=

7zD2
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' g A
(2) Stratified flow < %
DVQ
During summer months, large o N9
: e v ; e
reservoirs and lakes become ermocing nterfuce | @ . fnteke - channel
- L LD
thermally stratified. [ N R ——
Datum | _ - - T | M T EEEs
- At thermocline, temperature S I |
. R_e_}_se:yohf e y
changes rapidly with depth. S FIG. 6-11. Cold water intoke from

a stratified reservoir,

» Selective withdrawal: Colder water is withdrawn into the intake channel

with a velocity g, (uniform over the height 5, ) in order to provide cool

condenser water for thermal (nuclear) power plant.
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]

\
Ryl el _
(RN
o] sy

Pt

|

4zl
(284)

Wastewater Treatment
Plant

THET O=—

T, Water Surface

Sea Bed o
T [z
2 W T ez g
Riser

Ports Diffuser Pipe

.

v U

Riser
"Detail of Diffuser"

Diffuser Pipe
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Apply Bernoulli eq. between points (0) and (1)

2 2

&+a0 yo _ P +b1+q—1 (6.75) R
29 vy 29 R

o =0

Po = hydrostatic pressure = (y— Ay)(d, — &)

plzy(dO_Ah_bl)

(6.76)

0, Ay

g Z=Ah—7(d0 -a,)

o {ZQ{A —ﬂ(d0 —ao)H2 (6.77)
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For isothermal (unstratified) case, a, = q

0, =+/29Ah - Torricelli’'s result (6.78)

(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

— Measure velocity from stagnation or impact pressure




6.7 Frictionless Flow
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 Pitot-static tube

2 — CI N
S G [|EE
P : ’
e |}k
By the way, ‘80703 _;{: .
= Shytion pont:
Py = P +7Ah =P, = P +7,AN g

ps_pO:Ah(ym_?/) (B)
Combine (A) and (B)

0 :\/ZAh(ym ~7)

yo,
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6.7 Frictionless Flow

P
v ke
Stagnation Stagnation
pressure at pressure on
tip stem
0 2 B
2 Static o
pressure e
S
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Four static pressure ports

Heated outer case

Stagnation
pressure port

\ Mounting flange

Stagnation pressure fitting }

b“ Static pressure fitting
Heater leads —" b
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(2) (1)}
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6.8 Vortex Motion

» vortex = fluid motion in which streamlines are concentric circles

For steady flow of an incompressible fluid, apply Navier-Stokes equations

in cylindrical coordinates

Assumptions:
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6.8 Vortex Motion

Continuity Eq.: Eq. (6.30)

].8 10 0
— =0
rar r80( ) 8292/y
1 0 oV
-0 —2=0 6.82
rae( ) _>89 ( )

Navier-Stokes Eq.: Eq. (6.29)

r-comp.

At
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6.8 Vortex Motion

| A

v, 10p
i 6.83
r o, or | |
2) 9 -comp

1%, {;(W[m]) 12% 22% 3 } .
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6.8 Vortex Motion

uollo
s 0= ——(rv
p arL ar( 9)} (6.83b)

3) z-comp.

oo e 2l %wﬂ

L el 9 T N
——+ui=—|r +
az HA ra ( %Zj 2/6/92 Z ( ,ng

O=-———"+0,=-——--0 (6.83¢)
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6.8 Vortex Motion
— =

Integrate 6 -Eq. (6.83) w.r.t. r

10
Cl — FE(I’VQ)

%,
C,=—
rC, ar(rvg)

Integrate again

%Cl +C,=rv, (A)
- need 2 BCs (6.84)

V,=—TI+—= (B) |
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6.8 Vortex Motion
#

z-Eq.

ap__ o
h pY=-y

P = —7/h — hydrostatic pressure distribution




6.8 Vortex Motion

g

6.8. 1 Forced Vortex - rotational flow Uy~

A
B - -
Consider cylindrical container of radius X \
R is rotated at a constant angular { ‘

velocity Q about a vertical axis
Substitute BCs into Eq. (6.84) r

) r=0, v,=0
—(A): 0+C,=0 .. C,=0
i) r=R, v,=RQ

5 (B):RO=ZR - C, =20
2




6.8 Vortex Motion

A
Eq. (B) becomes BX —I= \
2Q)
Vy=——I= Qdr | - solid-body rotation ] ‘ ‘
Q°r* 10p op )
r—Eq = — = pQ°r (C)
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6.8 Vortex Motion
=

Consider total derivative dp

op op 2
dp =—dr +—dh = pQ°rdr — ydh
P or oh 4

Integrate once
2
Al
p =Py~ yh+C,

Incorporate B.C. to decide C,

r:O, h:ho and p:pO

po=0-yh,+C; .. C,=p,+yh,




6.8 Vortex Motion
— =

P—PB=p

Q°r?
2

_7/(h_ho)

At free surface

64/64
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6.8 Vortex Motion
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» Rotation components in cylindrical coordinates

Eq. (6.18):

vorticity =2w, =2Q #0

— rotational flow

— Forced vortex is generated by the transmission of tangential shear stresses.
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6.8 Vortex Motion
—————————————————————

* Total head
2
V
H=Lihtle o const.
y 29

— Increases with radius
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6.8 Vortex Motion
— =

6.8.2 Irrofational or free vortex

Free vortex: drain hole vortex, tornado, hurricane, morning glory spillway
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6.8 Vortex Motion
— e

For irrotational flow,

2
L \;i = const. - throughout the fluid field
/4 g

Differentiate w.r.t r

Z coincides with h
14p ay( L, g (@_h:@_h:o,a_hzlj
y or ﬁr 8r or 06 0Z
%) oV
'. —p=—pv9—9 0




69/64

6.8 Vortex Motion
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Eq (6.83a): r-Eq. of N-S Eq.

p_ Ve
o Cr (B)

Equate (A) and (B)

oy Mo Ve Ny
Ploar =Py or ¢

Integrate using separation of variables

1 1
jzave :I—Far
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6.8 Vortex Motion

Inv,=—Inr+C
Inv, +Inr=In(v,r)=C

v,r =C, ~ constant angular momentum

VvV, =2
0
r

[Cf] Forced vortex

v, =Qr




71/84

6.8 Vortex Motion

« Radial pressure gradient

» Total derivative o _
/ oh

C2

dp:a—pdug‘;dh p=-dr —ya

or




6.8 Vortex Motion
—————————————————————

Integrate once :

p=—p$—7h+Cs

B.C. r=0: h=h, and P=p,

Substitute B.C. into Eq. (6.93)
P, =—7hy +C;
Cs = p, +7hy

C, ‘ / ”’ T
P— P, :7/(h0 _h)_pz_:g  Free surface for Rodbing combined wrtex
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6.8 Vortex Motion

[Cf] Forced vortex: P— P, = > L oyr? +7/(h —h)

* Locus of free surface is given when p= p,

2
h=h, - C, — — hyperboloid of revolution
29r
QZ
[Cf] Forced vortex: h = h, +2_r
g

« Circulation ds=rd@
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6.8 Vortex Motion
é

— Even though flow is irrotational, circulation for a contour enclosing the

origin is not zero because of the singularity point.

o=
» Stream function, 21
oy C, T
V<9 = = =
or r 2nr
T jdl’_ I Inr
v 2T r 2«

where [ = vortex strength
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6.8 Vortex Motion
—————————————————————

* Vorticity component ,
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6.8 Vortex Motion
g

At r= 0 of drain hole vortex, either fluid

does not occupy the space or fluid is

rotational (forced vortex) when drain in

the tank bottom is suddenly closed.
— Rankine combined vortex

— fluid motion is ultimately dissipated :

P = patm

through viscous action e
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6.8 Vortex Motion
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(b)

ion

8 Vortex Mot

6
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Homework Assignment

g

Homework Assignment # 6

Due: 2 weeks from today

1. (6-4) Consider an incompressible two-dimensional flow of a viscous fluid

in the Xy-plane in which the body force is due to gravity. (a) Prove that the

divergence of the vorticity vector is zero. (This expresses the conservation

of vorticity, v.Z =0.) (b) Show that the Navier- Stokes equation for this flow

can be written in terms of the vorticity as ‘Z—f:vvf . (This is a “diffusion”
equation and indicates that vorticity is diffused into a fluid at a rate which

depends on the magnitude of the kinematic viscosity.) Note that d% is the

substantial derivative defined in Section 2-1.
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6.8 Vortex Motion
—— A

2. (6-5) Consider a steady, incompressible laminar flow between parallel

plates as shown in Fig. 6-4 for the following conditions: a=0.03 m,
U=0.3 m/sec, 1=0.476 N-sec/m?, op/ox=625 N/m?3 (pressure
increases in + x -direction). (a) Plot the velocity distribution, ¢(z), in the

z-direction. Use Eq. (6.24) (b) In which direction is the net fluid motion?

(c) Plot the distribution of shear stress 7, in the z-direction.

U
—
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6.8 Vortex Motion
— =

3. (6-7) An incompressible liquid of density p and viscosity « flows in a thin

film down glass plate inclined at an angle « to the horizontal. The

thickness, a, of the liquid film normal to the plate is constant, the velocity
is everywhere parallel to the plate, and the flow is steady. Neglect viscous
shear between the air and the moving liquid at the free surface. Determine

the variation in longitudinal velocity in the direction normal to the plate, the

shear stress at the plate, and the average velocity of flow.
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4. (6-11) Consider steady laminar flow in the horizontal axial direction

through the annular space between two concentric circular tubes. The

radii of the inner and outer tube are r, and r,, respectively. Derive the

expression for the velocity distribution in the direction as a function of

viscosity, pressure gradient Jp/0ox , and tube dimensions.
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5. (6-15) The velocity potential for a steady incompressible flow is given by @

=(-al 2)(x?+ 2y- z?), where ais an arbitrary constant greater than zero.
(a) Find the equation for the velocity vector G = iU+ jv+ kw
(b) Find the equation for the streamlines in the xz ()= 0) plane.

(c) Prove that the continuity equation is satisfied.

6. (6-21) The velocity variation across the radius of a rectangular bend (Fig.

6-22) may be approximated by a free vortex distribution v, r = const.

Derive an expression for the pressure difference between the inside and

outside of the bend as a function of the discharge @, the fluid density p, and

the geometric parameters R and b6, assuming frictionless flow.
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