
1/84

Chapter 6 Equations of Continuity and Motion

Session 6-3 Motions of viscous and inviscid fluids
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○ In Ch. 4, 1st law of thermodynamics → 1D Energy eq.

→ Bernoulli eq. for steady flow of an incompressible fluid with zero 

friction (ideal fluid)

○ In Ch. 6, Newton's 2nd law → Momentum eq. → Eq. of motion (6.4) → 

Bernoulli eq. 

○ Irrotational flow = Potential flow

6.6 Irrotational Motion

Integration assuming irrotational flow (6.3)



4/84

6.6.1 Velocity potential and stream function

If φ(x, y, z, t ) is any scalar quantity having continuous first and second 

derivatives, then by a fundamental vector identity 

[Detail] vector identity

6.6 Irrotational Motion

( ) ( ) 0curl grad φ φ→ ≡ ∇ × ∇ ≡

grad i j k
x y z
φ φ φφ φ ∂ ∂ ∂

∇ = = + +
∂ ∂ ∂



 

(6.46)
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6.6 Irrotational Motion

2 2 2 2 2 2

( )

0

i j k

curl grad
x y z

x y z

i j k
y z y z z x z x x y x y

φ

φ φ φ

φ φ φ φ φ φ

∂ ∂ ∂
=

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

     ∂ ∂ ∂ ∂ ∂ ∂
= − + − + − ⇒     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     



 



 
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By the way, for irrotational flow

Eq.(6.17) : 

Thus, from (6.46) and (A), we can say that for irrotational flow there 

must exist a scalar function φ whose gradient is equal to the velocity 

vector

Now, let's define the positive direction of flow is the direction in which  is 

decreasing, φ then

6.6 Irrotational Motion

0q∇ × =


(A)

.q


grad qφ =


(B)

( , , , )q grad x y z tφ φ= − = −∇
 (6.47)
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where φ = velocity potential

→ Velocity potential exists only for 

irrotational flows; however stream function 

is not subject to this restriction. 

→ irrotational flow = potential flow for both 

compressible and incompressible fluids

6.6 Irrotational Motion

, ,u v w
x y z
φ φ φ∂ ∂ ∂

= − = − = −
∂ ∂ ∂

(6.47a)
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(1) Continuity equation for incompressible fluid

Eq. (6.5): 

Substitute (6.47) into (C)

→ Laplace Eq. 

← Cartesian coordinates

← Cylindrical coordinates

6.6 Irrotational Motion

0q∇ ⋅ =


(C)

( ) 2 0φ φ∴∇ ⋅ −∇ = −∇ =

2 2 2
2

2 2 2 0
x y z
φ φ φφ ∂ ∂ ∂

∇ = + + =
∂ ∂ ∂

2 2
2

2 2 2
1 1 0r
r r r r z

φ φ φφ
θ

∂ ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ ∂ 

(6.48)

(6.49)

(6.50)
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6.6 Irrotational Motion

[Detail] velocity potential in cylindrical coordinates

, ,r zv v v
r r zθ
φ φ φ

θ
∂ ∂ ∂

= − = − = −
∂ ∂ ∂

(2) For 2-D incompressible irrotational motion

• Velocity potential

u
x

v
y

φ

φ

∂
= −

∂
∂

= −
∂

(6.51)
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6.6 Irrotational Motion

• Stream function:  Eq. (6.8)

u
y

v
x

ψ

ψ

∂
= −

∂
∂

=
∂

(6.52)

y x

x y

ψ φ

ψ φ

∂ ∂ = ∂ ∂ ∴ 
∂ ∂ = −

∂ ∂ 

→ Cauchy-Riemann equation (6.53)
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6.6 Irrotational Motion

Now, substitute stream function, (6.8) into irrotational flow, (6.17)

Eq. (6.17) : u v
y x

∂ ∂
=

∂ ∂
[ ]0 0rotation q← = ∇ × =



2 2 2 2

2 2 2 2 0
y x x y
ψ ψ ψ ψ∂ ∂ ∂ ∂

∴ − = → + =
∂ ∂ ∂ ∂

→ Laplace eq. 

Also, for 2-D flow, velocity potential satisfies the Laplace eq.

2 2

2 2 0
x y
φ φ∂ ∂

+ =
∂ ∂

(D)

(E)
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→ Both φ and ψ satisfy the Laplace eq. for 2-D incompressible 

irrotational motion.

→ φ and ψ may be interchanged.

→ Lines of constant φ and ψ must form an orthogonal mesh system 

→ Flow net

 Flow net analysis

Along a streamline, ψ = constant.

Eq. for a streamline, Eq. (2.10)

6.6 Irrotational Motion

.const

dy v
dx uψ =

= (6.54)
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6.6 Irrotational Motion

BTW along lines of constant velocity potential  

Substitute Eq. (6.47a)

0dφ→ =

0d dx dy
x y
φ φφ ∂ ∂

= + =
∂ ∂

.const

dy ux
dx v

yφ

φ

φ
=

∂
∂= − = −

∂
∂

(F)

(6.55)
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6.6 Irrotational Motion

From Eqs. (6.54) and (6.55)

. .const const

dy dx
dx dyψ φ= =

= − (6.56)

→ Slopes are the negative reciprocal of each other. 

→ Flow net analysis (graphical method) can be used when a solution of 

the Laplace equation is difficult for complex boundaries.
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6.6 Irrotational Motion
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6.6 Irrotational Motion
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=
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6.6 Irrotational Motion

1. Uniform flow

→ streamlines are all straight and parallel, and the magnitude of the 

velocity is constant

, 0U
x y

Ux C

φ φ

φ

∂ ∂
= =

∂ ∂
= +

'

, 0U
y x

Uy C

ψ ψ

ψ

∂ ∂
= =

∂ ∂

= +

Potential flows
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6.6 Irrotational Motion

2. Source and Sink

• Fluid flowing radially outward from a line through the origin 

perpendicular to the x-y plane

• Let m be the volume rate of flow emanating from the line (per unit 

length)

(2 )

2

r

r

r v m
mv

r

π

π

=

=
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6.6 Irrotational Motion

1, 0
2

ln
2

m
r r r

m r

φ φ
π θ

φ
π

∂ ∂
= =

∂ ∂

=

If m is positive, the flow is radially outward → source

If m is negative, the flow is radially inward → sink

1
2

2

r
mv

r r
m

ψ
θ π

ψ θ
π

∂
= =

∂

=

The streamlines are radial lines, 

and equipotential lines are concentric circles.
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6.6 Irrotational Motion

3. Vortex (Sec. 6.8)

Flow field in which the streamlines are concentric circles

In cylindrical coordinate

The tangential velocity varies 

inversely with distance from the 

origin. 

1 Kv
r r rθ

φ ψ
θ

∂ ∂
= = − =

∂ ∂

ln
K

K r
φ θ
ψ

=
= −
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6.6 Irrotational Motion

Free vortex Forced vortex
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Find velocity potential φ

Find ψ → Find flow pattern

6.6 Irrotational Motion

[Appendix II] Potential flow problem 

Find velocity

Find kinetic energy            
Find pressure, force

Bernoulli eq.
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6.6 Irrotational Motion

6.6.2 The Bernoulli equation for irrotational incompressible fluids

(1) For irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

Eq. (6.17) : 0

w v
y z
u wq
z x
v u
x y

∂ ∂ = ∂ ∂ 
∂ ∂ ∇ × = = ∂ ∂ 
∂ ∂ = ∂ ∂ 



irrotational flow
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Eq. (6.28):  Navier-Stokes eq. ( x -comp.) for incompressible fluid

6.6 Irrotational Motion

21
2

v
x

∂
∂

21
2

w
x

∂
∂

2 2 2

2 2 2
1u u u u h p u u uu v w g

t x y z x x x y z
µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

21
2

u
x

∂
∂

vv
x

∂
∂

ww
x

∂
∂

2v
y x
∂

∂ ∂

2w
z x

∂
∂ ∂

2 2 2 1
2 2 2

u u v w h p u v wg
t x x x x x y z

µ
ρ ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

(6.57)
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Substitute  q2 = u2 +v2 +w2  and continuity eq. for incompressible fluid into 

Eq. (6.57)

Continuity eq., Eq. (6.5): 

Then, viscous force term can be dropped.

→ x - Eq.

6.6 Irrotational Motion

0u u uq
x y z

∂ ∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂


2 1
2

u q h pg
t x x xρ

 ∂ ∂ ∂ ∂
+ = − − ∂ ∂ ∂ ∂ 

2

0
2

u q pgh
t x ρ

 ∂ ∂
+ + + = ∂ ∂  
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6.6 Irrotational Motion

2

. 0
2

v q py Eq gh
t y ρ

 ∂ ∂
− + + + = ∂ ∂  

2

. 0
2

w q pz Eq gh
t z ρ

 ∂ ∂
− + + + = ∂ ∂  

(6.58)

(6.59)

Introduce velocity potential φ , ,u v w
x y z
φ φ φ∂ ∂ ∂

= − = − = −
∂ ∂ ∂

2 2 2

, ,u v w
t t x t t y t t z

φ φ φ∂ ∂ ∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(A)
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6.6 Irrotational Motion

Substituting (A) into (6.59) yields

2

0 .
2
q pgh x Eq

x t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

2

0 .
2
q pgh y Eq

y t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

2

0 .
2
q pgh z Eq

z t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

(B)
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6.6 Irrotational Motion

Integrating (B) leads to Bernoulli eq.

( )
2

2
q pgh F t

t
φ

ρ
∂

− + + + =
∂

(6.60)

~ valid throughout the entire field of irrotational motion

For a steady flow; 0
t
φ∂

=
∂

2

.
2
q pgh const

ρ
+ + = (6.61)
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→ Bernoulli eq. for a steady, irrotational flow of an incompressible fluid 

Dividing (6.61) by g (acceleration of gravity) gives the head terms

H = total head at a point; constant for entire flow field of irrotational motion

(for both along and normal to any streamline) 

→ point form of 1- D Bernoulli Eq. 

p, H, q = values at particular point → point values in flow field

6.6 Irrotational Motion

2

.
2
q ph const
g γ

+ + =

2 2
1 1 2 2

1 22 2
q p q ph h H
g gγ γ

+ + = + + = (6.62)
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[Cf] Eq. (4.26)

H = constant along a stream tube

→ 1-D form of 1-D Bernoulli eq.

p, h, V = cross-sectional average values at each section → average values

• Assumptions made in deriving Eq. (6.62)

→ incompressibility + steadiness + irrotational motion+ constant viscosity 

(Newtonian fluid)

6.6 Irrotational Motion

2 2
1 1 2 2

1 22 2
p V p Vh h H

g gγ γ
+ + = + + =
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In Eq. (6.57), viscosity term dropped out because  (continuity Eq.).

→ Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.  

• Viscous flow

Velocity gradients result in viscous shear. 

→ Viscosity causes a spread of vorticity (forced vortex).

→ Flow becomes rotational.

→ H in Eq. (6.62) varies throughout the fluid field. 

→ Irrotational motion takes place only in a few special cases (irrotational

vortex).

6.6 Irrotational Motion

0q∇ ⋅ =

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6.6 Irrotational Motion

potential flow

rotational flow
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6.6 Irrotational Motion

• Irrotational motion can never become rotational as long as only 

gravitational and pressure force acts on the fluid particles (without shear 

forces).

→ In real fluids, nearly irrotational flows may be generated if the motion is 

primarily a result of pressure and gravity forces. 

[Ex] free surface wave motion generated by pressure forces (Fig. 6.8)

flow over a weir under gravity forces (Fig. 6.9)
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6.6 Irrotational Motion
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6.6 Irrotational Motion

• Vortex motion

i) Forced vortex - rotational flow 

~ generated by the transmission of tangential shear stresses

→ rotating cylinder

ii) Free vortex - irrotational flow

~ generated by the gravity and pressure

→ drain in the tank bottom, tornado, hurricane
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6.6 Irrotational Motion

Free vortexForced vortex
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6.6 Irrotational Motion

• Boundary layer flow (Ch. 8)

i) Flow within thin boundary layer - viscous flow- rotational flow 

→ use boundary layer theory

ii) Flow outside the boundary layer - irrotational (potential) flow 

→ use potential flow theory
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For inviscid flow

→ Assume no frictional (viscous) effects but compressible fluid flows 

→ Bernoulli eq. can be obtained by integrating Navier-Stokes equation

along a streamline.

Eq. (6.24a):  N-S eq. for ideal compressible fluid (µ = 0) 

6.7 Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline

2g p qρ µ− ∇ + ∇
  ( )

3
qµ

+ ∇ ∇ ⋅
 ( )q q q

t
ρ ρ∂

= + ⋅∇
∂



 

( )p qg q q
tρ

∇ ∂
− = + ⋅∇

∂



   (6.63)
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→ Euler's equation of motion for inviscid (ideal) fluid flow

Substituting (6.26a) into (6.63) leads to

Multiply    (element of streamline length) and integrate along the streamline

( )p qg h q q
tρ

∇ ∂
− ∇ − = + ⋅∇

∂



 

g g h= − ∇


(6.64)

idx jdy kdz+ +


 

dr

( ) ( )1 qg h dr p dr dr q q dr C t
tρ

∂ − ∇ ⋅ − ∇ ⋅ = ⋅ + ⋅∇ ⋅ +    ∂ ∫ ∫ ∫ ∫


     

(6.65)

6.7 Frictionless Flow
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( ) ( )dp qgh dr q q dr C t
tρ

∂ − − = ⋅ + ⋅∇ ⋅ +    ∂ ∫ ∫ ∫


   

I

(6.66)

( ) ( ) ( )I q q dr dr q q q dr q= ⋅∇ ⋅ = ⋅ ⋅∇ = ⋅ ⋅∇          
        

II

By the way,

( ) ( ) ( )II dr dx dy dz
x y z

∂ ∂ ∂
= ⋅∇ = + +

∂ ∂ ∂


( ) q q qdr q dx dy dz dq
x y z

∂ ∂ ∂
∴ ⋅∇ = + + =

∂ ∂ ∂

  

  

6.7 Frictionless Flow
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2

2
qI q dq d  

= ⋅ =  
 

 

( )
2 2

2 2
q qq q dr d  

∴ ⋅∇ ⋅ = =    
 

∫ ∫
  

Thus, Eq. (6.66) becomes

( )
2

2
dp q qgh dr C t

tρ
∂ + + + ⋅ = − ∂ ∫ ∫



(6.67)

For steady motion, ( )0;q C t C
t

∂
= →

∂



6.7 Frictionless Flow
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Divide by g

For incompressible fluids, ρ = const. 

2

.
2

dp qgh const
ρ

+ + =∫ along a streamline (6.68)

2

.
2

p qgh const
ρ

+ + =

2

2
p qh C

gγ
+ + = along a streamline (6.69)

6.7 Frictionless Flow
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→ Bernoulli equation for steady, frictionless, incompressible fluid flow

→ Eq. (6.69) is identical to Eq. (6.22). Constant C is varying from one 

streamline to another in a rotational flow, Eq. (6.69); it is invariant 

throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms
• Bernoulli equations for steady, incompressible flow

1) For irrotational flow

constant throughout the flow field
2

2
p qH h

gγ
= + + = (6.70)

6.7 Frictionless Flow



44/84

2) For frictionless flow (rotational)

2

2
p qH h

gγ
= + + = constant along a streamline (6.71)

3) For 1-D frictionless flow (rotational)

2

2
p VH h Ke

gγ
= + + = constant along finite pipe (6.72)

4) For steady flow with friction ~ include head loss hL

6.7 Frictionless Flow

2 2
1 1 2 2

1 22 2 L
p q p qh h h

g gγ γ
+ + = + + + (6.73)
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6.7.3 Applications of Bernoulli's equation to flows of real fluids
(1) Efflux from a short tube

• Zone of viscous action (boundary layer):  frictional effects cannot be 

neglected.

• Flow in the reservoir and central core of the tube:  primary forces are 

pressure and gravity forces. → irrotational flow

• Apply Bernoulli eq. along the centerline streamline between (0) and (1)

6.7 Frictionless Flow
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p0 = hydrostatic pressure = γd0 , p1 = patm →         = 0 

q0 = 0 (neglect velocity at the large reservoir)

→ Torricelli’s result

2 2
0 0 1 1

0 12 2
p q p qz z

g gγ γ
+ + = + +

1gage
p

0 1z z=

2
1

02
q d
g

∴ =
1 02q gd= (6.74)

6.7 Frictionless Flow

If we neglect thickness of the zone of viscous influence
2

14
DQ qπ

=
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• Selective withdrawal:  Colder water is withdrawn into the intake channel 

with a velocity q1 (uniform over the height b1 ) in order to provide cool 

condenser water for thermal (nuclear) power plant. 

(2) Stratified flow

6.7 Frictionless Flow

During summer months, large 

reservoirs and lakes become 

thermally stratified. 

→ At thermocline, temperature 

changes rapidly with depth.
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6.7 Frictionless Flow
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Apply Bernoulli eq. between points (0) and (1)

(6.75)

p0 = hydrostatic pressure = (γ – ∆γ)(d0 – a0)

2 2
0 0 1 1

0 12 2
p q p qa b

g gγ γ
+ + = + +

0 0q ≅

( )1 0 1p d h bγ= − ∆ −
(6.76)

( )
2

1
0 02

q h d a
g

γ
γ

∆
∴ = ∆ − −

( )
1
2

1 0 02q g h d aγ
γ

  ∆
= ∆ − −  

  
(6.77)

6.7 Frictionless Flow
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For isothermal (unstratified) case, a0 = d0

1 2q g h= ∆ → Torricelli’s result (6.78)

(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

→ Measure velocity from stagnation or impact pressure 

(6.79)

(6.80)

(6.81)

2 2
0 0

0 2 2
s s

s
p q p qh h

g gγ γ
+ + = + +

0 ,sh h= 0sq =
2

0 0

2
sq p p h

g γ
−

∴ = = ∆

0 2q g h= ∆

6.7 Frictionless Flow
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• Pitot-static tube 

( )0
0

2 sp p
q

ρ
−

= (A)

By the way,

1 2 0s mp p h p p hγ γ= + ∆ = = + ∆

( )0s mp p h γ γ− = ∆ −

Combine (A) and (B)

( )
0

2 mh
q

γ γ
ρ

∆ −
=

(B)

6.7 Frictionless Flow
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6.7 Frictionless Flow
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6.7 Frictionless Flow
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6.7 Frictionless Flow
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6.8 Vortex Motion

• vortex = fluid motion in which streamlines are concentric circles

For steady flow of an incompressible fluid, apply Navier-Stokes equations 

in cylindrical coordinates

Assumptions:

0vθ ≠

h

( ) 0
t

∂
=

∂
0; 0; 0r z

vv v
z
θ∂

= = =
∂

0p
θ

∂
=

∂
p p
z h

∂ ∂
=

∂ ∂
(    =vertical direction)
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1)  r -comp.  

6.8 Vortex Motion

Continuity Eq.:  Eq. (6.30)

( )1
rrv

r r
∂
∂

( ) ( )1
zv v

r zθθ
∂ ∂

+ +
∂ ∂

0=

( )1 0 0vv
r

θ
θθ θ

∂∂
= → =

∂ ∂
(6.82)

Navier-Stokes Eq.:  Eq. (6.29)

rv
t

ρ ∂
∂

r
r

vv
r

∂
+

∂
rv v

r
θ

θ
∂

+
∂

2
r

z
v vv
r z
θ ∂

− +
∂

 
 
 
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6.8 Vortex Motion

1
r

p rv
r r r r

µ∂ ∂ ∂
= − +

∂ ∂ ∂

2

2 2
1 rv
r θ

∂   +   ∂  2
2 v
r

θ

θ
∂

−
∂

2

2
rv

z
∂

+
∂ rgρ

   + 
  

2 1v p
r r
θ

ρ
∂

=
∂

(6.83a)

θ2)   -comp. 

v
t
θρ ∂

∂ rv+
v v v
r r
θ θ θ

θ
∂ ∂

+
∂ ∂

rv v
r

θ− zv+
v
z
θ ∂

 ∂ 

1 p
r θ

∂
= −

∂
[ ]

2

2 2
1 1 vrv

r r r r
θ

θµ
θ

∂ ∂ ∂ + + ∂ ∂ ∂  2
2 rv
r θ

∂
−

∂

2

2
v
z

θ∂
+

∂
gθρ

   + 
  
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3) z -comp.

6.8 Vortex Motion

( )10 rv
r r r θ

µ
ρ

∂ ∂ ∴ =  ∂ ∂ 
(6.83b)

zv
t

ρ ∂
∂ rv+ z zv v v

r r
θ

θ
∂ ∂

+
∂ ∂

rv v
r

θ− z
z

vv
z

∂
+

∂
 
 
 

1 zp vr
z r r r

µ∂ ∂ ∂
= − +

∂ ∂ ∂

2

2 2

1 zv
r θ

  ∂
+  ∂ 

2

2
zv

z
∂

+
∂ zgρ

   + 
  

1 10 z
p pg g
z hρ ρ

∂ ∂
= − + = − −

∂ ∂ (6.83c)
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Integrate θ -Eq. (6.83) w.r.t. r 

Integrate again 

6.8 Vortex Motion

( )1
1C rv
r r θ

∂
=

∂

( )1rC rv
r θ

∂
=

∂

2

1 2

1 2

( )
2

( )
2

r C C rv A

C Cv r B
r

θ

θ

+ =

= +
need 2 BCs (6.84)
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z -Eq.

→ hydrostatic pressure distribution 

6.8 Vortex Motion

p g
h

ρ γ∂
= − = −

∂

p hγ= −
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6.8.1 Forced Vortex - rotational flow 

Consider cylindrical container of radius 

R is rotated at a constant angular 

velocity Ω about a vertical axis

Substitute BCs into Eq. (6.84)

6.8 Vortex Motion

i) 

2 2

0, 0
( ) : 0 0 0

r v
A C C

θ= =

→ + = ∴ =

1
1

,

( ) : 2
2

r R v R
CB R R C

θ= = Ω

→ Ω = ∴ = Ω

ii) 
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6.8 Vortex Motion

Eq. (B) becomes

2
2

v r rθ
Ω

= = Ω → solid-body rotation

2 2
21. : r p pr Eq r

r r r
ρ

ρ
Ω ∂ ∂

− = → = Ω
∂ ∂

. : pz Eq
h

γ∂
− = −

∂

(C)

(D)
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Incorporate B.C. to decide C3

Consider total derivative dp

Integrate once

6.8 Vortex Motion

2p pdp dr dh rdr dh
r h

ρ γ∂ ∂
= + = Ω −

∂ ∂

2
2

32
rp h Cρ γ= Ω − +

00;r h h= = and 0p p=

0 0 30p h Cγ= − + 3 0 0C p hγ∴ = +
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6.8 Vortex Motion

( )
2 2

0 02
rp p h hρ γΩ

− = − −

At free surface

0p p=

2
2

0 2
h h r

g
Ω

= +

→ paraboloid of revolution
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• Rotation components in cylindrical coordinates

→ rotational flow

→ Forced vortex is generated by the transmission of tangential shear stresses.

6.8 Vortex Motion

Eq. (6.18):

vorticity

( ) ( )

1 1
2
1 1
2 2

r
z

v v v
r r r

r r
r r

θ θω
θ

∂ ∂ = − + + ∂ ∂ 
Ω ∂ = + Ω = Ω + Ω = Ω ∂ 

2 2 0zω= = Ω ≠
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6.8 Vortex Motion

• Total head
2

2
p vH h

g
θ

γ
= + + ≠

→ increases with radius

const.
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6.8 Vortex Motion

6.8.2 Irrotational or free vortex
Free vortex:  drain hole vortex, tornado, hurricane, morning glory spillway
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6.8 Vortex Motion

For irrotational flow,
2

2
p vh

g
θ

γ
+ + = const.   → throughout the fluid field

Differentiate w.r.t r 

1 1 0vp h v
r r g r

θ
θγ

∂∂ ∂
+ + =

∂ ∂ ∂

p vv
r r

θ
θρ∂ ∂

∴ = −
∂ ∂

coincides with hz

0, 1h h h
r zθ

∂ ∂ ∂ = = = ∂ ∂ ∂ 

(A)
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Eq (6.83a):  r -Eq. of N-S Eq.

Equate (A) and (B)

Integrate using separation of variables

6.8 Vortex Motion

2p v
r r

θρ∂
=

∂
(B)

2v v vv r v
r r r
θ θ θ

θ θρ ρ∂ ∂
− = → − =

∂ ∂

1 1v r
v rθ

θ

∂ = − ∂∫ ∫
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6.8 Vortex Motion

ln lnv r Cθ = − +

( )ln ln lnv r v r Cθ θ+ = =

4v r Cθ = ～ constant angular momentum

4Cv
rθ =

[Cf] Forced vortex

v rθ = Ω
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6.8 Vortex Motion

• Radial pressure gradient

(B):

( )22 2
4

3 3

v rp v C
r r r r

θθρ ρ ρ∂
= = =

∂

• Total derivative

2
4
3

p p Cdp dr dh dr dh
r h r

ρ γ∂ ∂
= + = −

∂ ∂

p
h

γ∂
= −

∂
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6.8 Vortex Motion

Integrate once
2

4
522

Cp h C
r

ρ γ= − − +

B.C.: and0:r h h= ∞ = 0p p=

Substitute B.C. into Eq. (6.93)

0 0 5p h Cγ= − +

5 0 0C p hγ= +

( )
2

4
0 0 22

Cp p h h
r

γ ρ− = − −
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6.8 Vortex Motion

[Cf] Forced vortex: ( )2 2
0 02

p p r h hρ γ− = Ω + −

• Locus of free surface is given when p = p0

2
4

0 22
Ch h
gr

= − → hyperboloid of revolution

[Cf] Forced vortex: 
2

2
0 2

h h r
g

Ω
= +

• Circulation

[ ]
2 2

4 400
2 0q ds v rd C C

π π
θ θ θ πΓ = ⋅ = = = ≠∫ ∫

 



ds rdθ=

4v r Cθ =
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6.8 Vortex Motion

→ Even though flow is irrotational, circulation for a contour enclosing the 

origin is not zero because of the singularity point.

• Stream function, ψ 4 2
C

π
Γ

=

4

2
Cv

r r rθ
ψ

π
∂ Γ

= = =
∂

ln
2 2

dr r
r

ψ
π π
Γ Γ

= =∫

Γwhere   = vortex strength 
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6.8 Vortex Motion

• Vorticity component ωz

1 r
z

v
r

ω
θ

∂
= −

∂
v v
r r
θ θ∂

+ +
∂

Substitute 4Cv
rθ =

4 4 4 4
2 2 2 0z

C C C C
r r r r r

ω ∂  = + = − = ∂  

→ Irrotational motion
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At r = 0 of drain hole vortex, either fluid 

does not occupy the space or fluid is 

rotational (forced vortex) when drain in 

the tank bottom is suddenly closed. 

→ Rankine combined vortex

→ fluid motion is ultimately dissipated 

through viscous action

6.8 Vortex Motion
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6.8 Vortex Motion
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6.8 Vortex Motion
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1. (6-4) Consider an incompressible two-dimensional flow of a viscous fluid 

in the    -plane in which the body force is due to gravity. (a) Prove that the 

divergence of the vorticity vector is zero. (This expresses the conservation 

of vorticity,            .) (b) Show that the Navier- Stokes equation for this flow 

can be written in terms of the vorticity as                   . (This is a “diffusion” 

equation and indicates that vorticity is diffused into a fluid at a rate which 

depends on the magnitude of the kinematic viscosity.)  Note that is the 

substantial derivative defined in Section 2-1.

Homework Assignment

Homework Assignment # 6

Due: 2 weeks from today

xy

0ζ∇ ⋅ =


2d
dt
ζ ν ζ= ∇




d
dt

ζ

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2. (6-5) Consider a steady, incompressible laminar flow between parallel 

plates as shown in Fig. 6-4 for the following conditions:  a =0.03 m,    

U =0.3 m/sec, µ = 0.476 N·sec/m2, =625 N/m3 (pressure 

increases in + x -direction).  (a) Plot the velocity distribution, u(z), in the     

z -direction. Use Eq. (6.24) (b) In which direction is the net fluid motion? 

(c) Plot the distribution of shear stress τzx in the z -direction.

6.8 Vortex Motion

/p x∂ ∂
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3. (6-7) An incompressible liquid of density ρ and viscosity µ flows in a thin 

film down glass plate inclined at an angle α to the horizontal. The 

thickness, a , of the liquid film normal to the plate is constant, the velocity 

is everywhere parallel to the plate, and the flow is steady. Neglect viscous 

shear between the air and the moving liquid at the free surface. Determine 

the variation in longitudinal velocity in the direction normal to the plate, the 

shear stress at the plate, and the average velocity of flow.

6.8 Vortex Motion
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4. (6-11) Consider steady laminar flow in the horizontal axial direction 

through the annular space between two concentric circular tubes. The 

radii of the inner and outer tube are  r1 and r2, respectively. Derive the 

expression for the velocity distribution in the direction as a function of 

viscosity, pressure gradient      , and tube dimensions.

6.8 Vortex Motion

/p x∂ ∂
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6. (6-21) The velocity variation across the radius of a rectangular bend (Fig. 

6-22) may be approximated by a free vortex distribution νθ r = const.
Derive an expression for the pressure difference between the inside and 

outside of the bend as a function of the discharge Q, the fluid density ρ, and 

the geometric parameters R and b , assuming frictionless flow.

6.8 Vortex Motion

5. (6-15) The velocity potential for a steady incompressible flow is given by Φ 

= (−a / 2)(x 2 + 2y – z 2), where a is an arbitrary constant greater than zero.  

(a) Find the equation for the velocity vector          .  

(b) Find the equation for the streamlines in the xz (y = 0) plane. 

(c) Prove that the continuity equation is satisfied.

q iu jv kw= + +


 


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6.8 Vortex Motion
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