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Chapter 7 Specialized Equations in Fluid Dynamics

Contents

7.1 Flow Classifications

7.2 Equations for Creeping Motion and 2-D Boundary Layers

7.3 The notion of resistance, drag, and lift 

Objectives

- Discuss special cases of flow motion

- Derive equations for creeping motion 

- Derive equation for 2-D boundary layers and integral equation

- Study flow resistance and drag force
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7.1 Flow Classifications

7.1.1 Various Flows
(1) Laminar flow vs. Turbulent flow

- Laminar flow ~ water moves in parallel streamline (laminas); 

viscous shear predominates; low Re (Re < 2100)

- Turbulent flow ~ water moves in random, heterogeneous fashion; 

inertia force predominates; high Re (Re > 4000)

Neither laminar nor turbulent motion would occur in the absence of viscosity.

(2) Creeping motion vs. Boundary layer flow 

- Creeping motion – high viscosity → low Re

- Boundary layer flow– low viscosity → high Re

2
3

2 2

2

( )vlinertia force Ma v l vl vllReynolds number dvviscous force A vll
dy

ρ ρ ρ
τ µ µ νµ

= = = = = =
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7.1 Flow Classifications

Laminar
flow

Transition
flow

Turbulent
flow
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7.1 Flow Classifications

Laminar 
boundary layer 
flow

Separation 
occurs at the 
crest.

Turbulent 
boundary layer 
flow:  no 
separation
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7.1 Flow Classifications

External flow:  
potential flow

Boundary layer 
flow:  rotational 
flow

Intermittent 
nature
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7.1 Flow Classifications

→ Seo, I. W., and Song, C. G., "Numerical Simulation of Laminar Flow 

past a Circular Cylinder with Slip Conditions," International Journal for 
Numerical Methods in Fluids, Vol. 68, No. 12, 2012. 4, pp. 1538-1560. 

→ 34th IAHR World Congress, Brisbane, Australia, Jun. 26 - Jul. 1 2011
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7.1 Flow Classifications

7.1.2 Creeping motion

Creeping motion:  

∼extreme of laminar motion - viscosity is very high, and velocity is very small.

→ Inertia force can be neglected (Re → 0).

→ Convective acceleration and unsteadiness may be neglected.

For incompressible fluid,

Continuity Eq.:  

Navier-Stokes Eq.: 

0q∇ ⋅ =


( ) ( )2

3
q q g p qq q
t

µρ ρ ρ µ∂
+ = − ∇ + ∇ + ∇⋅∇ ∇ ⋅

∂



   
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7.1 Flow Classifications

[Ex]  - fall of light-weight objects through a mass of molasses 

→ Stoke’s motion Re < 1

- filtration of a liquid through a densely packed bed of fine solid 

particles (porous media → Darcy’s law)
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For continuum fluid, there is no slip at the rigid boundary.  [Cf] partial slip

→ Fluid velocity relative to the boundary is zero.

→ Velocity gradient            and shear stress have maximum values at the 

boundary

7.1 Flow Classifications

7.1.3 The boundary layer concept

du
dy

 
 
 

. 

0du
dy
 Flow caused

by a moving
cylinder
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7.1 Flow Classifications

For very low viscosity and high acceleration of the fluid motion 

→ Significant viscous shear occurs only within a relatively thin layer next 

to the boundary. 

→ boundary layer flow (Prandtl, 1904)

• Boundary layer flow:

∼ inside the boundary layer, 

viscous effects override inertia effects.

• Outer flow:

∼ outside the layer, the flow will suffer only a minor influence of the 

viscous forces. 
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7.1 Flow Classifications

∼ Flow will be determined primarily by the relation among inertia, 

pressure gradient, and body forces.

→ potential flow (irrotational flow)

1) Flow past a thin plate and flow past a circular cylinder 

→ Due to flow retardation within boundary-layer thickness δ, 

displacement of streamlines is necessary to satisfy continuity. 
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7.1 Flow Classifications

Potential 
core Boundary 

layer

[Re]

Creeping flow:  very viscous fluids → only laminar flow

Boundary-layer flow:  slightly viscous fluids → both laminar and turbulent flows 

2) Boundary layers in pipes

- Laminar flow between parallel walls → Poiseuille flow (parabolic profile) 

- Turbulent flow in pipes → logarithmic profile
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Boundary Layers 

7.2.1 Creeping motion

→ Study Ch. 9 (D&H)

Assumptions: 

– incompressible fluid

– very slow motion → inertia terms can be neglected.

2 2 2

2 2 2

1

0

u u u u h p u u uu v g
t x y z x x x y z

aeceleration body force normal force shear force
inertia effect

µω
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

= →
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2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

( )

( )

( )

p h u u u
x x y z

p h v v v
y x y z

p h w w w
z x y z

γ µ

γ µ

γ µ

 ∂ + ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

 ∂ + ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

 ∂ + ∂ ∂ ∂
+ = + + ∂ ∂ ∂ ∂ 

2( )p h qγ µ∇ + = ∇


x-Eq.

y-Eq.

z-Eq.

(7.1)

→ pressure change = combination of viscous effects and gravity 

(7.1a)
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1) For incompressible fluids in an enclosed system (fluid within fixed 

boundaries) 

where  Pd = pressure responding to the dynamic effects by acceleration

(hydrostatic relation)

where const. depends only on the datum selected.

Eq. (7.1a) becomes

(7.2)

→ Equation of motion for creeping flow

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

dp p const hγ∴ = + −

2( )dp const h h qγ γ µ∇ + − + = ∇


2
dp qµ∇ = ∇



d sp p p= +

.sp const hγ= −
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2) Continuity eq. for constant density

(A)

Solve (7.2) and (A) together with BC's

[Ex] Stoke's motion:  Re < 1

~ very slow flow past a fixed sphere  → refer Figs. 9.1-9.3 (D&H)

~ solid sphere falling through a very viscous infinite fluid

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

0q∇⋅ =


, , ,
. 3 1

Unknowns u v w p
Eqs

=
 = +
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Boundary Layers 

• Solution: 2 2 2

0 3 2 2

2

0 3 2

2

0 3 2

03

3 1( 1) (3 ) 1
4 4

3 ( 1)
4
3 ( 1)
4
3
2d

ax a a au V
r r r r

axy av V
r r
axz aw V
r r

axp V
r

µ

 
= − − + + 

 

= −

= −

= −

(9.4)



19/507.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

0
02

0
max

0
min

3 3 cos ( cos )
2 2

3
2
3
2

r a

x a

x a

Vxp V x a
a a

Vp upstream stagnation point
a
Vp downstream stagnation point
a

µµ θ θ

µ

µ

=

=−

=

= − = − =

∴ =

= −







1( )r
r

vv
r r

θ
θτ µ

θ
∂∂

= +
∂ ∂

• Pressure distribution:  Eq. (9.4) → Fig 9.4

• Shear stress:

(9.12)
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03 sin
2r r a

V
aθ

µτ θ=∴ =

3

0 3

3

0 3

3 1cos (1 )
2 2

3 1sin (1 )
4 4

r
a av V
r r

a av V
r rθ

θ

θ

= − +

= − − −

where

(9.13)

• Drag on the sphere 

Eq. (8.22):
0 0

sin cosr

f p

D ds p ds

D frictional drag pressure drag D

π π

θτ θ θ= + −

= =

∫ ∫

where 22 sinds a dπ θ θ=

0 0 04 2 6D a V a V a V

frictional drag pressure drag

π µ π µ π µ∴ = + =
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Boundary Layers 

→ Fig. 9.5:  valid if Re < 1; 

for Re > 1 we cannot neglect inertia effect. 

Eq. (8.27):

2 2
20 0

2 2D D
V VD C A C aρ ρ π= =

2
20

06
2D

Va V C aπ µ ρ π∴ =

0 0

12 24 24
/ ReDC

V a V D
µ

ρ ρ µ
∴ = = = (9.17)
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7.2.2  Equations for 2-D boundary layers 

(1) Two-dimensional boundary layer equations:  Prandtl

→ simplification of the N-S Eq. using order-of-magnitude arguments

→ 2D dimensionless N-S eq. for incompressible fluid (omit gravity) 

L

0V

0V

L, V0 - constant reference values
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dimensionless boundary-layer thickness δ°

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

,u v x y 

u u
y x

∂ ∂
∂ ∂


~p is small may be neglected
y

∂
∂

1
L
δδ δ° = → °

2
2

1 1 1 δ δ
δ δ

> > > ° > °
° °

∴ scale for decreasing order

Within thin and small curvature boundary layer
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Order of magnitude
(1)x O° 

( )y O δ° °

(1)u O° 

( )v O δ° °

(1)u O
x

∂ °
∂ °



(1)v v uO
y y x

continuity  ∂ ° ∂ ° ∂ °
= − ∂ ° ∂ ° ∂ ° 

←

1( )u O
y δ

∂ °
∂ ° °



( )v O
x

δ∂ °
°

∂ °


xx
L

° =

yy
L

° =

0

uu
V

° =

0

vv
V

° =

2
0

pp
Vρ

° =
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2

2 (1)
( )

u u O
x x x

∂ ° ∂ ∂ ° =  ∂ ° ∂ ° ∂ ° 


2

2

1~ ( )
( )

v v O
y y y δ

 ∂ ° ∂ ∂ °
=  ∂ ° ∂ ° ∂ ° ° 

~ (1)u u x uu O
t x t x

∂ ° ∂ ° ∂ ° ∂ °
= = °

∂ ° ∂ ° ∂ ° ∂ °

~ ( )v v x vu O
t x t x

δ∂ ° ∂ ° ∂ ° ∂ °
= = ° °

∂ ° ∂ ° ∂ ° ∂ °

2Re ~ ( )vy Oρ δ
µ

= °
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2 2

2 2

1:
Re

u u u p u ux u v
t x y x x y

 ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° ∂ °
+ ° + ° = − + + ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° 

1 /δ δ° × ° 2 2(1 1/ )δ δ° + °

(7.3)

1        1x1 → 1

2 2

2 2

1:
Re

v v v p v vy u v
t x y y x y

 ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° ∂ °
+ ° + ° = − + + ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° ∂ ° 

δ ° 1 δ× ° 1δ °× 2 ( 1/ )δ δ δ° ° + ° δ °→ 

: 0u vContinuity
x y

∂ ° ∂ °
+ =

∂ ° ∂ °
1        1
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Therefore, eliminate all terms of order less than unity in Eq. (7.3) and 

revert to dimensional terms

(7.7)

→ Prandtl's 2-D boundary-layer equation

(7.8)

Unknowns: u, v, p; Eqs. = 2 → needs assumptions for p

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

2

2

1u u u p uu v
t x y x y

µ
ρ ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂

0u v
x y

∂ ∂
+ =

∂ ∂

: 1) 0 ; 0, 0BC y u v= = =

2) ; ( )y u U x= ∞ =
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7.2.3  Boundary - layer thickness definitions  

(1) Boundary-layer thickness, 

~ The point separating the boundary layer from the zone of negligible 

viscous influence is not a sharp one. → very intermittent 

δ = distance to the point where the velocity is within 1% of the free-

stream velocity, U

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

A1

A2 

 @ 99  .  0u Uy δδ == →

Intermittent nature
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(2) Mass displacement thickness, δ∗ (δ1)

~ is the thickness of an imaginary layer of fluid of velocity U.

~ is the thickness of mass flux rate equal to the amount of defect

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

(7.9)

1 2A A=

0
( )

h
U U u dy h

mass defect

ρ δ ρ δ∗ = − ≥∫

0
(1 )

h u dy
U

δ ∗∴ = −∫
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[Re] mass flux = mass/time

(3) Momentum thickness, θ (δ2)

→ Velocity retardation within δ causes a reduction in the rate of 

momentum flux.

→ θ is the thickness of an imaginary layer of fluid of velocity U for which 

the momentum flux rate equals the reduction caused by the velocity 

profile.

(7.10)

1Q UA Uρ ρ ρ δ ∗= = = ×

2 2

0 0
( ) ( )

h h
U U u udy Uu u dyρθ ρ ρ= − = −∫ ∫

0
(1 )

h u u dy
U U

θ∴ = −∫
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[Re] momentum in θ =  

momentum in shaded area  = 

(4) Energy thickness, δ3

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

2mass velocity U U Uρθ ρθ× = × =

[ ]( )U u u dyρ − ×∫

δ δ θ∗> >

3 2 2
3 0

1 1 ( )
2 2

h
U u U u dyρ δ ρ= −∫

2

3 20
(1 )

h u u dy
U U

δ∴ = −∫
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[Re]

1) Batchelor (1985):  

displacement thickness = distance through which streamlines just 

outside the boundary layer are displaced laterally by the retardation 

of fluid in the boundary layer.

2) Schlichting (1979):  

displacement thickness = distance by which the external streamlines 

are shifted owing to the formation of the boundary layer. 
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7.2.4 Integral momentum equation for 2-D boundary layers
Integrate Prandtl's 2-D boundary-layer equations

Assumptions:

constant density             

steady motion              

pressure gradient = 0          

BC's:  

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

0dρ =

( ) 0
t

∂
=

∂

0p
x

∂
=

∂

@ ; 0,y h u Uτ= = =

0@ 0 ; , 0y uτ τ= = =

2

2

1u u u p uu v
t x y x y

µ
ρ ρ

∂ ∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂ ∂

0u v
x y

∂ ∂
+ =

∂ ∂
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Boundary Layers 

Prandtl's 2-D boundary-layer equations become as follows:

(A)

(B)

Integrate Eq. (A) w.r.t. y

(C)

2

2

u u uu v
x y y

µ
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂

0u v
x y

∂ ∂
+ =

∂ ∂

2

20 0

y h y h

y y

u u uu v dy dy
x y y

δ µ
ρ

= ≥ =

= =

 ∂ ∂ ∂
+ =  ∂ ∂ ∂ 

∫ ∫
① ② ③
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[ ]
2

2 00 0 0

0 0 00

h h h h

y h y

u udy dy dy
y y y y

τµ µ τ

τ τ τ τ= =

 ∂ ∂ ∂ ∂
= = = = ∂ ∂ ∂ ∂ 

= − = − = −

∫ ∫ ∫③

0 0 0
②

④ ⑤

h h hu uv vv dy dy u dy
y y y

∂ ∂ ∂
= = −

∂ ∂ ∂∫ ∫ ∫

' 'vu dy vu v udy= −∫ ∫

00
[ ] 0

h h
h

uv dy uv Uv Uv
y

∂
= = − =

∂∫④=

[Re] Integration by parts: 

(D)
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Continuity Eq.:

→

Substitute (i) into ⑤

Substitute (i) into ④

v u
y x

∂ ∂
= −

∂ ∂

0

h uv dy
x

∂
= −

∂∫

0 0
⑤=

h hu uu dy u dy
x x

∂ ∂ − = − ∂ ∂ ∫ ∫

0
④

h uUv U dy
x

∂
= = −

∂∫

(i) 

(ii)
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Eq. (D) becomes

(E)

Then, (C) becomes

For steady motion with and U = const., (F) becomes

0 0 0

h h hu u uv dy U dy u dy
y x x

∂ ∂ ∂
= − +

∂ ∂ ∂∫ ∫ ∫

0
0 0 0

h h hu u uu dy U dy u dy
x x x

τ
ρ

∂ ∂ ∂
− + = −

∂ ∂ ∂∫ ∫ ∫

2
0

0 0 0 0

2

0 0

2

[ ( )] ( ) ( )

h h h h

h h

u u Uu uU dy u dy dy dy
x x x x

u U u dy u U u dy U
x x x

τ
ρ

θ

∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂

∂ ∂ ∂
= − = − =

∂ ∂ ∂

∫ ∫ ∫ ∫

∫ ∫
2Uθ

(F)
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where θ = momentum thickness     

(7.18)

Introduce local surface (frictional) resistance coefficient  

(7.19)

Combine (7.18) with (7.19) 

2 20 ( )U U
x x

τ θθ
ρ

∂ ∂
= =

∂ ∂

fC

0

2 2

2 2

f
f

f

D
C

u A U

τ
ρ ρ= =

2

2f f fD C A uρ
=

2
0 2 fC Uρτ =

2fC
x
θ∂

=
∂ (7.20)

0
2x U

θ τ
ρ

∂
=

∂
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[Re] Integral momentum equation for unsteady motion

→ unsteady motion:  

→ pressure gradient, 

First, simplify Eq. (7.7) for external flow where viscous influence is 

negligible.

() 0
t

∂
≠

∂

0p
x

∂
≠

∂

U U UU v
t x y

∂ ∂ ∂
+ +

∂ ∂ ∂

2

2

1 p U
x y

µ
ρ ρ

∂ ∂
= − +

∂ ∂

U U pU
t x x

ρ ρ∂ ∂ ∂
+ = −

∂ ∂ ∂
(A)
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Substitute (A) into (7.7)

Integrate

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

(B)

2

2
u u u U U uu v U
t x y t x y

µ
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂ ∂

1 p
xρ

∂
−

∂

2

20 0

h hu u U u U udy u U v dy
y t t x x y

µ
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ = − + − + ∂ ∂ ∂ ∂ ∂ ∂  
∫ ∫

① ② ③ ④

2
0

20
:

h u dy
y

µ τ
ρ ρ

∂
= −

∂∫①

0 0 0
: ( ) ( )②

h h hu U dy u U dy u U dy U
t t t t t

δ ∗∂ ∂ ∂ ∂ ∂ − = − = − = − ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫

Uδ ∗−
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0
③

h u U U Uu u dy u U dy
x x x x

∂ ∂ ∂ ∂   = − + −   ∂ ∂ ∂ ∂   ∫ ∫

0
( )

h
u u U dy

x
∂ − ∂ ∫

0 0
( ) ( ) ( )

h hU U Uu U dy u U dy U
x x x

δ ∗∂ ∂ ∂ − = − = − ∂ ∂ ∂ ∫ ∫

0 0 0
( )

h h hu u u uv dy U dy u dy u U dy
y x x x

∂ ∂ ∂ ∂
= − + = −

∂ ∂ ∂ ∂∫ ∫ ∫ ∫

③-1                       ③-2

③-2= 

④= 

③-1= 

.( )Eq E
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Combine ③-1 and ④

Substituting all these into (B) yields

→ Karman's integral momentum eq.

7.2 Equations for Creeping Motion and 2-D 
Boundary Layers 

(7.21)

0 0 0
( ) ( ) ( ) ( )

h h hu uu u U dy u U dy u u U u U dy
x x x x

∂ ∂ ∂ ∂ − + − = − + − ∂ ∂ ∂ ∂ ∫ ∫ ∫

{ } 2

0 0
( ) ( ) ( )

h h
u u U dy u u U dy U

x x x
θ∂ ∂ ∂

= − = − = −
∂ ∂ ∂∫ ∫

20 ( ) ( )UU U U
t x x

τ δ δ θ
ρ

∗ ∗∂ ∂ ∂
− = − − −

∂ ∂ ∂

20 ( ) ( )UU U U
x x t

τ θ δ δ
ρ

∗ ∗∂ ∂ ∂
= + +

∂ ∂ ∂
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→ Study Ch.15 (D&H)

Resistance to motion = drag of a fluid on an immersed body in the direction of flow

♦ Dynamic (surface) force exerted on the rigid boundary by moving fluid are

1) Tangential force caused by shear stresses due to viscosity and velocity 

gradients at the boundary surfaces

2) Normal force caused by pressure intensities which vary along the surface due to

dynamic effects

7.3 The notion of resistance, drag, and lift 
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7.3 The notion of resistance, drag, and lift 

♦ Resultant force = vector sum of the normal and tangential surface 

forces integrated over the complete surface

~ resultant force is divided into two components:

1) Drag force = component of the resultant force in the direction of 

relative velocity 

2) Lift force = component of the resultant force normal to the relative 

velocity 

~ Both drag and lift include frictional and pressure components.
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7.3 The notion of resistance, drag, and lift 
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7.3 The notion of resistance, drag, and lift 

♦ Total drag, D

where 

7.3.1 Drag force

f pD D D= +

0 sinf s
D frictional drag dsτ φ= = ∫

cosp s
D pressure drag p dsφ= = − ∫

sin sin(90 ) cos

cos cos(90 ) sin

φ α α

φ α α

= ° + =

= ° + = −
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7.3 The notion of resistance, drag, and lift 

① Frictional drag = surface resistance = skin drag 

② Pressure drag = form drag 

~ depends largely on shape or form of the body

For airfoil, hydrofoil, and slim ships:  surface drag > form drag

For bluff objects like spheres, bridge piers:  surface drag < form drag
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♦ Drag coefficients,  

Where     Af = actual area over which shear stresses act to produce 

Ap = frontal area normal to the velocity  

7.3 The notion of resistance, drag, and lift 

,
f pD DC C

2
0

2ff D f
VD C Aρ=

2
0

2pp D P
VD C Aρ=

fD

0V
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♦ Total drag coefficient CD

where A = frontal area normal to VO

[Re] Dimensional Analysis

7.3 The notion of resistance, drag, and lift 

2
0

2D
VD C Aρ=

f pD D DC C C= +

( , Re)D DC C geometry= → Ch. 15

1( , , , )D f V Lρ µ=

2 22 2 (Re) D
D VLf f C
L V

ρ
ρ µ

 
= = = 

 
2

2DD C AVρ
∴ =
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7.3.1 Lift force
For lift forces, it is not customary to separate the frictional and pressure 

components.

♦ Total lift, L

where  CL = lift coefficient; A = largest projected area of the body

7.3 The notion of resistance, drag, and lift 

2
0

2L
VL C Aρ=
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