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Objectives
- Learn fundamental concept of turbulence
- Study Reynolds decomposition

- Derive Reynolds equation from Navier-Stokes equation

- Study eddy viscosity model and mixing length model
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8.1.1 Definition

* Hinze (1975): Turbulent fluid motion is an irregular condition of flow in

which the various quantities show a random variation with time and

space coordinates, so that statistically distinct average values can be

discerned.
statistically distinct average values: mean flow, primary motion
[ran om fluctuations: non-periodic, secondary motion,
instantaneously unsteady, varies w.r.t. time and

space

u=u-+u'
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 Types of turbulence

Wall turbulence: turbulence generated and continuously affected by actual

physical boundary such as solid walls

Free turbulence: absence of direct effect of walls, turbulent jet - AEH Il




6/110
8.1 Introduction

#
8.1.2 Origin of turbulence

(1) Shear flow instability
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Vortex stretching,
folding,
sheetification

Smaller size vortex
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(2) Boundary-wall-generated turbulence

~ wall turbulence

External flow
=
Boundary layer
flow
Qo G e S Y »

///////////////////// //////777/_7777 B L AL HL S
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(3) Free-shear-layer-generated turbulence

~ free turbulence
Jet

g Wake

(®)

e e Shear

layer

53




8.1 Introduction

Air quicky separates from ball.
Air flow
around ball -
is laminar ' ' -
— layered
and smooth. A vortex is created. Swirling
air creates heavy drag.
~ — Turbulence sucks air to ball.
. 5 jamﬂm*hdahrud
Dimples
create . N
s E £ f
layer of ai s
around ball. ~ This results in a smaller

~ vortex and less drag,

10/110
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Outer zone

Boundary layer

157. Side view of a turbulent boundary layer. Here a a vertical slice of light. The Reynolds number is 3500 based

turbulent boundary layer develops naturally on a flac plate on the momentum thickness. The intermittent nature of
3.3 m long suspended in a wind tunnel. Sereaklines from a the outer part of the layer is evident. Photograph by 1s
smoke wire near the sharp leading edge are illuminated by Corke, Y. Guezennec, and Hassan Nagib. :

. /- 7 d .-{\‘\,\ ” i
158. Turbulent boundary layer on a wall. A fog of tiny shows the flow pattern 5.8 m downstream, where the |
oil droplets is introduced into the laminar boundary layer Reynolds number based on momentum thickness is about
on the test-section floor of a wind tunnel, and the layer 4000. Falco 1977

then tripped to become turbulent, A vertical sheet of light
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vertex ri'r\g

Y

Turbulent jet

102. Instability of an axisymmetric jet. A laminar edge of the jet develops axisymmetric oscillations, rolls up
stream of air flows from a circular tube at Reynolds into yortex rings, and then abruptly becomes turbulent.

number 10,000 and is made visible by a smoke wire. The Photograph by Robert Drubka and Hassan Nagib
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166. Turbulent water jet. Laser-induced fluorescence The spatial resolution is adequate to resolve the Kolmo-
shows the concentration of jet fluid in the plane of sym- gorov scale in the downstream half of the photograph
metry of an axisymmetric jet of water directed downward Dimotakis, Lye & Papantoniou 198]

into water. The Reynolds number is approximately 2300
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Awx Album e
Flurd Motien pp.aq-iei

169. Entrainment by a plane turbulent jet.
A time exposure shows the mean flow of a
plane jet of colored water issuing into ambient
water at 100 cm/s. Tiny air bubbles mark the
streamlines of the slow motion induced in the
surrounding water. ONERA photograph, Werlé
1974

170. Entrainment by an axisymmetric tur-
bulent jet. A jet of colored turbulent water
flows from a tube of 9 mm diameter ac 200
em/s. According to boundary-layer theory the
streamlines shown by air bubbles in the water
outside the jet are boloids of lution,
and parabolas in the plane case above.
ONERA photograph, Werlé 1974

Wake

.-———~ ; i i d 50 diameters
c ol i covering 40 diameters centere
ke of a cylinder. A sheet of laser light tern, e e

:K::: ;ll-\urrut:::?i:ewa ke of a circular cylinder at a Reynolds downstream. Photograph by

number of 1770. Oil fog shows the instantaneous flow pat-
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Coarse grid

Non-isotropic
turbulence

152. Generation of turbulence by a grid. Smoke wires ber is 1500 based on the 1-inch mesh size. Instability of the

show a uniform laminar stream passing through a !/, s-inch shear layers leads to turbulent flow downstream. Photo-
plate with %-inch square perforations. The Reynolds num- graph by Thomas Corke and Hassan Nagib
grid Curbulenee

Fine grid

Isotropic
turbulence

153. Homogeneous turbulence behind a grid. Behind stream, it providdb a useful approximation to the idealiza-
a finer grid than above, the merging unstable wakes tion of isotropic Rurbulence. Photograph by Thomas Corke
quickly form a homogeneous field. As it decays down® and Hassan Nagib
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8.1.3 Nature of turbulence

(1) Irregularity
~ randomness - small scale eddies

~ need to use statistical methods to turbulence problems

~ Turbulent motion can also be described by Navier-Stokes Eq.

[Cf] coherent structure — large scale eddies
~ interact with mean flows

~ correlated each other with time and space

~ ordered motion
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(2) Diffusivity
~ causes rapid mixing and increased rates of momentum, heat, and mass
transfer

~ exhibit spreading of velocity fluctuations through surrounding fluid

~ the most important feature as far as practical applications are concerned; it

increases heat transfer rates in machinery, it increases mass transfer in water

Yy
2

.
(a)
~ ‘ | I l F Zone of flow establishment | Zone of fully developed flow
o - —— \
P d 0 -1~ - ®
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(3) Large Reynolds numbers
~ occur at high Reynolds numbers
~ Turbulence originates as an instability of laminar flows if Re becomes

too large.

pipe flow Re, =2,100

boundary layer  re,=Y% _ 600

14
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(4) Three-dimensional vorticity fluctuations

~ Turbulence is rotational and three-dimensional.

~ high levels of fluctuating vorticity
~ need to use vorticity dynamics

~ tend to be isotropic

[Cf] The 2-D flows like cyclones, random (irrotational) waves in the ocean

are not turbulent motions.
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(5) Dissipations
~ deformation work increases the internal energy of the fluid while

dissipating kinetic energy of the turbulence

~ needs a continuous supply of energy to make up for viscous losses.

~ main energy supply comes from mean flow by interaction of shear

stress and velocity gradient

~ |If no energy is supplied, turbulence decays rapidly.

~ random motions that have insignificant viscous losses such as
random sound waves are not turbulent

[Re] Energy cascade

main flow — large scale turbulence - small scale turbulence— heat
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(6) Continuum
~ continuum phenomenon

~ governed by the equation of fluid mechanics: Navier-Stokes Eq. +

Continuity Eq.

~ larger than any molecular length scale

(7) Flow feature
~ feature of fluid flows not fluid itself

~ Most of the dynamics of turbulence is the same in all fluids.

~ Major characteristics of turbulent flows are not controlled by the

molecular properties of the fluid.
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8.1.4 Description of turbulence problems

(1) Turbulence modeling

» Time-averaged Navier-Stokes Eq. - Reynolds Equations (RANS)

— No. of unknowns {mean values ( U, Vv, W, p )+ Reynolds stress
components (c; =—pu,'u;") } > No. of equations
— Closure problem:

~ The gap (deficiency of equations) can be closed only with auxiliary

models and estimates based on intuition and experience.

Turbulence models
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(2) Methods of analysis
1) Phynomenological concepts of turbulence

~ based on a superficial resemblance between molecular motion and

turbulent motion
~ crucial assumptions at an early stage in the analysis

 Eddy viscosity model (Boussinesq)

~ turbulence-generated viscosity is modeled using analogy with molecular

Viscosity

~ characteristics of flow
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* Mixing length model (Prandtl)

~ analogy with mean free path of molecules in the kinetic theory of gases

du

dy

du

r=—pu'v'=pl? @y

2) Dimensional analysis
~ one of the most powerful tools

~ result in the relation between the dependent and independent variables

[Ex] form of the spectrum of turbulent kinetic energy
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3) Asymptotic theory

~ based on asymptotic invariance

~ exploit asymptotic properties of turbulent flows as Re approaches
infinity (or very high).

[EX)] Theory of turbulent boundary layers

Reynolds-number similarity

4) Deterministic approach
Large Eddy Simulation (L.E.S)

~ model only large fluctuations

5) Stochastic approach




26/110
8.2 Sources of Turbulence

#

8.2. 1 Source of turbulence
(1) Surfaces of flow discontinuity (velocity discontinuity)

1) tip of sharp projections — a), b)
2) trailing edges of air foils and guide vanes — ¢)

3) zones of boundary-layer separation — d)

(b) _ (© @

FIG. 11-1. Eddy formation at velocity discontinuity surfaces: (a) sharp projection; (b) bluff bedy; (c) trailing
edge; (d) boundary-layer separation.
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At surfaces of flow discontinuity,
— tendency for waviness to develop by accident from external cause or

from disturbance transported by the fluid.

e ST L e e

— waviness tends to be unstable

- amplify (grow in amplitude) He e
- curl over M/

— break into separate eddies

=~ A
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(2) Shear flows where velocity gradient occurs w/o an abrupt discontinuity

~ Shear flow is becoming unstable and degenerating into turbulence.

[EX] Reynolds' experiment with a dye-streak in a glass tube

(c)
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[Re] How turbulence arises in a flow

1) Presence of boundaries as obstacles creates vorticity inside a flow
which was initially irrotational (vorticity, o=V xu).

2) Vorticity produced in the proximity of the boundary will diffuse
throughout the flow which will become turbulent in the rotational

regions.
3) Production of vorticity will then be increased due to vortex filaments

stretching mechanism.

[Re] Grid turbulence = turbulence created

behind a fixed grid in a wind tunnel - isotropic
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8.2.2 Mechanisms of instability

 Tollmien-Schlichting's small perturbation theory

~ Disturbance are composed of oscillations of a range of frequencies

which can be selectively amplified by the hydrodynamic flow field.

Re<Re_, — all disturbances will be damped

Re > Re_; - disturbances of certain frequencies will be amplified and

others damped
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* Tollmien-Schlichting stability diagram
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320 || =
@ Neutral stability
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8.3. 1 Reynolds decomposition .

(1) Velocity decomposition e
Uu=u-+u' L “ : Sl L'

V=V+V'

WZV_V-l-WI (81)

Time. r

U,V,W = instantaneous velocity
u,Vv,w = mean value = time-averaged value
JW'=

u',v' fluctuating components

(steady flow; %” =0) (8.2)
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=

where 7 = long time compared to the time scale of the turbulence

Pipe flow: 10-1~10° sec

Channel/River flow: 109~10" sec

=0 (. fluctuations are both plus and minus) (8.3)

p=p+p' o )|

P EO_ T should include (smooth out) all
O-ij = O-ij + O-'ij tf Time. r
— o fluctuation

o . =
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(3) Turbulence Intensity — show turbulence effects
— root-mean-square (rms) = square root of variance = standard
deviation average intensity of the turbulence = rms of u’

TI=\u? - { 1 [/ uat }; (8.4)

T

 Relative Turbulence Intensity (RTI) = —

v, (or vy)
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(4) Average kinetic energy of turbulence per unit mass

~ average KE of turbulence / mass

1 12 12 2\ 1 : H 2
KE= Z(U*+v*+w?)= EZ (intensity) (8.5)

(5) Energy density, ¢(f)

The kinetic energy is decomposed into an energy spectrum (density) vs.

frequency.
= limit of average kinetic energy per unit mass divided by the
bandwidth Af

4(f) = lim

average KE / mass contained in Af  OKE

Af >0 Af of
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. . )
where = ordinary frequency in cycles per second = Py

o 1 : : :
- average KE of turbulence / mass = |, #(f)df =5 T+VE W)

(6) Correlation between v, v’ and w’
exact correlation = one-to-one correlation

zero correlation = completely independent

u'v' =

— # 0 correlated
1_[0Tu'v'dt {

T =0 uncorrelated (8.6)




37/110
8.3 Velocities, Energies, and Continuity in Turbulence

é

~ In a shear flow in an xy~plane, u'v' is finite, and it is related to the

magnitude of the turbulent shear stress ( 7=—-pu'v').

[Re] Correlated variables

1) Averages of products u

uu; = (U, +U; ) (U +u; )

=Uu;u; +U;'u; +9(uj/ +%L{

:uiuj+ui'uj'

If u'u'20— u' and u,' are said to be correlated.

If u'u;’=0— u’ and u;' are uncorrelated.
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2) Correlation coefficient

u 'u.’
i
ii — —\1/2

in which u?, u,? = variances

If ¢ =*1 - perfect correlation

[Re] Classification of turbulence

1) General turbulence
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2) Homogeneous turbulence

~ statistically independent of the location

(Ui luj l)a - (ui 'Uj l)b
3) Isotropic turbulence

~ statistically independent of the orientation and location of the coordinate

axes

u?=v?=w? = constant

u'vi=viw'=w'u'=0

~ uncorrelated

~ not coherent structures — small scale eddies
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Isotropic Anisotropic

Figure 13.6 Isotropic and anisotropic turbulent fields. Each dot represents a uv-pair at a certain time.
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8.3.2 Measurement of turbulence

~ measure turbulent fluctuations

Hot-wire anemometer
Laser Doppler Velocimeter (LDV)
Acoustic Doppler Velocimeter (ADV)

Particle Image Velocimeter (PIV)
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8.3.2 Measurement of turbulence

~ measure turbulent fluctuations
(1) Hot-wire (hot-film) anemometer
~ Hot-film is usable in contaminated water.

~ Change of temperature affects the electric current flow or voltage

drop through wire. Fine platinum wire (film) is heated electrically by a
circuit that maintains voltage drop constant.

~ When inserted into the stream, the cooling, which is a function of the

velocity, can be detected as variations in voltage.
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~ Use two or more wires at one point in the flow to make simultaneous
measurements of different velocity components.

— After subtracting mean value, rms-values, correlations, and energy
spectra can be computed using fluctuation.

— These operations can be performed electronically.

Figure 15.22 Constani-tem, perature-anemo meter bridge circuit

Figure 15.21 Two forms of hot-wire anemometer probes:
(a) wire mounted normal to probe axis, Feedback amphfior

{h) wire mounted parallel to probe axis z 8= G 38 ¥ thyuiey
e Ceramk mic  Insonel 4 = .
Inconel wire tubing -
K e e . |
’ | z S o ) A,
e [E1]
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(2) Laser Doppler Velocimeter (LDV)

~ use Doppler effect
~ A laser (ultrasonic) beam transmitted into the fluid will be reflected

by impurities or bubbles in the fluid to a receiving sensor at a

different frequency.
— The transmitted and reflected signals are then compared by

electronic means to calculate the Doppler shift which is proportional

to the velocity.

~ non-intrusive sensing (immersible LDA)

~ sampling frequency is up to 20,000 Hz

Foo—f Y

doppler

source o~
C
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Figure 15.25 LDA transmitter and receiver packages (Courtesy of
David Carr, Aerometrics Inc., Sunnyvale, CA)

Laser velocimetry optics
ll‘aﬂiele flaw

Crossover peint
{measurement velume)

T

Receiver lenses 4’5—

Photodetector

Focusing lens
Signal wire
oulput

Waist

Intensity—»-

Tima—»

Scattered intensity plot

Interference
(particle signal)

Beam crossover
fringe pattern

Figure 15.24 Laser-Doppler optical systems: (a) reference-beam
arrangement, (b} differential-Doppler arrangement

Misrar
Reforonco bosm

Scanered light

Lager
Beam
spliner

Tow
with particles

Test-section

window

suaueriau Bght

i

Beam

splitter

Fﬁv
» with particles
fringe spacing:
¥ 2V, g
fo === (5F)sin(z),

whers F ( i ) (2) (15.18)

fo = the Doppler-shift frequency,
Ve = the particle velocity in the direction normal to the fringes.
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(3) Acoustic Doppler Velocimeter (ADV)
~ use Doppler effect of sonic wave

~ intrusive sensing

~ sampling frequency = 25-50 Hz

Remote
sampling ——__,\/
volume

H G |

.." ,/d//' I’__,__/—f'_'

i, <

(e —

N

\ ~

Transmitter
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Acoustic Acoustic Probe Signal Conditioning Module
Trans\mitter_____ /’ Sensor
\ S S e Penetrator High-frequency
N v Cable to Processor
\. It e r rd
Y |} %
P B
-.'.':1-:??""” L 7] '\ / ____
3 4 \\
Endbells

Supling | Sem g,
{ﬁmeg Acoustic Zinc

Receiver Anode
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(4) Particle Image Velocimetry (PI1V)
~ use Laser and CCD camera

~ measure flow field at once

~ sampling frequency = 30 Hz

Laserlight sheet

Computer for image acquisition
& systemeontrol |

% Two Continuum Minilite Nd-YAG Lasers

» Kodak Megaplus ES 1.0 CCD Camera

> Seeded With Hollow Glass Spheres

» Time of Acquisition: (30Hz; for 22 seconds)
% Using INSIGHT Software for PIV Processing

Flowplane
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PIV system
Interrogation
region
\\\\\ Interrogation
S region
frame 1 j _______________
. T |-' ., L H
Cross- N\
.t ol * - |
. L correlation—— > |
S R particle
- displacement

Crosscorrelation

\ector field
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Image recording

rge-coupled device, etc.)

Validation

AX

Flow field

u(x,t)

Displacement
interrogation

Digitizer

Image
processing

I[m,n]

Display

Storage

Kinematics

Statistics

U, rms...
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PIV system

N

LaVisionN

R R et LR LT
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Y {mm)
Y mm

X {mm)

a) Image b)Velocity c)Turbulence Intensity

Fig. 1 Jet Characteristics Measured by PIV (Seo et al., 2002)
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LDV: single point measurement

— =

PIV: field measurement
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[Re] Reynolds rules of averages: Schlichting (1979) Boundary-Layer

Theory
Let fand g are two dependent variables whose time mean values are to

be found. sis any one of the independent variables x, y, z, &

since time averaging is carried out by integrating over a long

— =——>| period of time,which commutes with differentiation with respect

to another independant variable

jfds:ﬁds
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8.3.3 Continuily for turbulent motion

Continuity equation for incompressible fluid

ou ov ow
+—+—=0
ox oy oz (A)

Substitute velocity decomposition into (A)

Ou+u) o(v+v) aw+w) _ . (8.7)
OX 6y 0z

ou OV OwW ou' ov' ow'

=0 (B)

+—+—+—+—+
OXx oy 07 ox oy oz
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Take time-averages of each term of (B)
ou ov ow oy oy oW .

oXx oy oz /3x /éy /92
Lo ey

T ox ox
aﬁ+&+aw_o
X oy o7 (8.8)
Substitute (8.8) into (B)

ou' ov' ow'
+ + =0
ox oy oz (8.9)

— Both mean-motion components and the superposed turbulent-motion

components must satisfy the continuity equation.

ontinuity must be satisfied for both turbulent and laminar motions.
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[Re] Continuity Eq. for compressible fluid

op N opu.
ot 0X

o+ p) +a{(5+p')(u7+ui ')}:0
ot OX.

Time averaging yields

o(p+p) , AHlp+p)u+uI}
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8.4. 1 Fall of pressure drop due fo shear stress

shear stress = resistance to motion

— dissipate flow energy — fall of pressure drop along a pipe — head loss

7R, g "
laminar flow; (pdﬂ/) oc V,
Z
d(p+rh)

turbulent flow: o« V' (n=2)

dz

where V, = average velocity
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Y
4
Slope=~2 Kot
Turbulént | /
NCICRI) , Yo N
& dz : _ +U/—"
! Uy
’l'
J Slope=1
Laminar -
lbg Vs » Velocity

FIG. 11-6. Pressure gradient with laminar and FIG. 11-7. Momentum ftransport by turbulent
turbulent flow in a conduit. velocity fluctuation.




60/110

8.4 Turbulent Shear Stress and Eddy Viscosity

8.4.2 Shear stress resisting to motion

(1) Boussinesq's eddy viscosity concept

du du

Ttotal = ILI dy + 77 dy (81 O)
laminar J turfbulent
flow low
where

u = mean local velocity (time - averaged)

b = dynamic molecular viscosity — property of the fluid
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n = dynamic eddy viscosity that depends on the state of the

turbulent motion « turbulent intensity
(¢ =% = kinematic eddy viscosity)
o
ﬂ% - apparent stress computed from the velocity gradient of mean

motion.
du

77@ - additional apparent stress associated with the turbulence

For laminar flow, 7n=0

For turbulent flow, #»n>u - 7w > Tian
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(2) Physical model of momentum transport (exchange)

~ momentum transport by turbulent velocity fluctuation (Ch. 3)

" Ewrbylest  momertum  exchaige

e Slow resistance
ST
' shear stress

Step 1: lower-velocity fluid parcel in layer 1 fluctuates with a v'-velocity

into layer 2
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Step 2: its velocity in the direction of the stream is less than mean

velocity of the layer 2 by an amount -u'

Step 3: drag of the faster moving surroundings accelerates the fluid
element and increases its momentum

Step 4: The mass flux (
= pV

mass
time - area

] crossing from layer 1 to layer 2

Step 5: Flow-direction momentum change = mass flux x velocity
= pv'x(-u)=—pu'v'

Step 6: Average over a time period

— _pu IVI

= effective resistance to motion

= effective shearing stress
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(3) Reynolds stress

=—pu'v’ (8.11)

= time rate change of momentum per unit area

= effective resistance to motion

~ actually acceleration terms

. ) ) du
~ instantaneous viscous stresses due to turbulent motion = n—

dy
_ ﬂ(dﬁ PV - ¢
total — d_y - — by
8.12
T \ ( )
shear stress shear stress due to
due to transverse transverse momentum transport of

molecular momentum macroscopic fluid particles by

transport turbulent motion
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For fully developed turbulence,

(8.13)

[Re] |Reynolds stress = —pu'V'

~ |f u' and v' are uncorrelated, there would be no turbulent momentum

transport.

~ usually not zero (correlated)

~ may exchange momentum of mean motion

~ exchanges momentum between turbulence and mean flow
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[Re] Effective addition to the normal pressure intensity acting in the flow
direction
= - pu'u’ = - pu” (8.14)

[Re] Momentum transport

Eq. (3.2); dtam) 1 =K1(ﬂj

dt area dy \ vol

Newton's 2nd law of motion

F =ma = md_v:d(mv)
dt dt

(A)

F_d(mv) 1 (B)

area dt area
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Assume only shear stresses exist,
Then LHS of (B) = 7
Combine (3. 2) & (B)
do

Ty (C)

By the way, for the turbulent motion

RHS of (B) = time rate change of momentum per unit area = —pu'v'

So—puv =1 (D)
Combine (C) and (D)
[ = piv = (E)
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8.4 Turbulent Shear Stress and Eddy Viscosity

[Re] Shear stress for turbulent jet

T<o

T70

v >0

u’u/ {0 T

N[

-oul

004
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8.4 Turbulent Shear Stress and Eddy Viscosity

Case l: - positive 7T 5
1) Y1 -0 > Yi qlfé’ = é 0 e ¥
% A\ = reul/
mass flux = AV s Ea————_
—_— _u' 'glé';‘é | e e | %)0 70 W i'd:,u,

velocity change =

'S

Sl

. momentum change = (pV) x (-u)=—-pu'Vv’

r=-pu'v’ -+ momentum change — positive

2) Vi +6 >V,
mass flax = AV
velocity change = +u'

.. momentum change = (=pv) x (U) =—pu'v’

r=-pu'v'> + momentum change — positive
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8.4 Turbulent Shear Stress and Eddy Viscosity

du _
Case II: v 0 - negative ¢ y
i _J&(
1) y1'—5—)y1' q(ﬂ’ré i
ny_gf,

. =y 0 (RGN
‘ ) W =reul
V' ;*6 . 4
mass flax = P s ﬁv . |
2 4 ! Zvo B0 W -
Y-4 i & o

velocity change = + U’

-.momentum change = (pV)x(U)=pu’v’
r=-pu’v'-» - momentum change - negative
2) vy, +o -y’
mass flux = p (-v")
velocity change = U’

.. momentum change = (=pV)x(-u) = pu'v’

r=-pu'v' > - momentum change - negative
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8.4 Turbulent Shear Stress and Eddy Viscosity

Fig. 46(c) Velocity Vector Fields for Case NFJ300 by PIV
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8.4 Turbulent Shear Stress and Eddy Viscosity

g

xB = 1 3 5 8 15 v .
[
: i ¢ Ky > 70
,‘ i A . 'y, "
(@) oo op—f—{ e Rgepoteiicd Roowyd . p—
| LR
du !z
—
}mz s 002 1:02 L 0.02 j)uz L 002 :Lm o 002 102 0 0.02 d‘“ 7[ ¥ u v (f
Uiy uviy Uiy [TA(V} uviu? am—
7 s
: ) =y P=-puy’
§ | { : oy
; ; . >e
{ . [ L, L
) S B Wi Bty Pty
{ $
/ / /
‘70 005 21 JB 005 01 .70 005 :' -Tur Q:Jﬁ 01 -?Elr I];E 01
wu? wu? wu? WU wu?

Fig. 4.15 Streamwise Development of Turbulent Characteristics for NFJ300 :
(@ wv/U*; (b) kTP

k= fimetic turbulest energy
=£(I:l_’-‘ + V2w
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8.5 Reynolds Equations for Incompressible Fluids

é
8.5. 1 Reynolds Equation

Navier-Stokes Eq. = equations of motion of a viscous fluid

~ applicable to both turbulent and non-turbulent flows

~ very difficult to obtain exact solution because of complexity of

turbulence

~ Alternative is to consider the pattern of the mean turbulent motion

even through we cannot establish the true details of fluctuations.

— average Navier-Stokes EqQ. over time to derive Reynolds Eq.
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8.5 Reynolds Equations for Incompressible Fluids

é

N-S Eq. in x-dir.:
p(a_u+ua_u+va_u+wa_uj=pgx_apx + 0, 0%y (8.15)
ot X 0z 0 oy 0z

Continuity Eq. for incompressible fluid:
p(ua—u+ua—v+u@]=0 (A)

ox oy 0z

Add (A) to (8.15), then LHS becomes

ou ou ou oV ou Oow) du ou® ouv  duw
LHS = —+2u—+ vg+u@ +| W—+U =—+ + +

oz oz) ot ox oy oz
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8.5 Reynolds Equations for Incompressible Fluids

g

Whole equation is

ou ou® ouv ouw | op, 07y Oty
p[at+ax+ay+az J_pgx ax+ay+az (8.16)
Decomposition:
u=u+u'
V=V+V'
w=w+w'
P = Pt Py (8.17)

Substitute (8.17) into (8.16), and average over time

p{a(U+u') LO@+u)Y AEFEHV) | 6(U+u')(v‘v+w')}
ot OX oy oz

— . 3 -
:pgx_a(px+px)+ TYX +6sz

OX oy oz
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8.5 Reynolds Equations for Incompressible Fluids

é

Rearrange according to the Reynolds average rule

ou+u)_ou_ oy _au

ot ot /ot ot

/ _

— N2 — —2 12

o(+u" :ai(uzyzﬁu#u'z):au +8u
X

OX OX OX

8(U+ua';(v+v') _ %(U\T+W+W+u'v') _ agvaralé;/v'

o(U+u’)(w+w') 0 —— = , — OUW oOu'w'
= —(Uw+ + +u'w") = +
0z 82( W W ) 0z 0z

(0w ou* euv oUW op, 07, 0T
P = P9y~ +

+ + +
ot ox oy 0z
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8.5 Reynolds Equations for Incompressible Fluids

é

_ou oV oW
Subtract Continuity Eq. of mean motion ( U al:( +U a\; U= =0)

ou ou®> ouv ouw _0u _ oV _Ow
o, + + + —|U—+U—+1U
ot ox oy 0z OX oy 0z

ap, 07, 0T, (au_'2 ou'v' 6u'w'J
—p + +

— _ + yx+ X
PR Ty | a x oy |

—+U—+V—+W—
ot X oy 0z
N LT L 5F+aﬁ+au'w'
P2 Ty e Pl oy a (8.18)
e turbulence acceleration terms —/

* mean transport of fluctuating

momentum by turbulent velocity
fluctuations

1 L F
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8.5 Reynolds Equations for Incompressible Fluids

#

y-direction:

N oV OV oty p, 07,
pl —+U—+V—+W =pg, +———>L+—2
ot ox oy oz Yooox oy ez
ov'u' ov?  ov'w!'

- + +
OX oy 0z

z-direction:

oW _OW _OW _OW o7, 07, 0p,
P +U—+V—+W = pg,+ + -
ot OX oy 0z oXx oy oz

OX oy 0z

Léw'u' ow'v' 8WJ
- + +
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8.5 Reynolds Equations for Incompressible Fluids

#

Rearrange (8.18)

ou _ou _ou _ou
Yo, +U—+V—+W
ot ox oy oz

_ i A" 12 g = T g = 1 1
_pgx_l_ax( px pu )+ay(z-yx puv)+6z(z—zx IOUW)

Sum of apparent stress of
the mean motion and
additional apparent stress
due to turbulent fluctuations
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8.5 Reynolds Equations for Incompressible Fluids

é

Introduce Newtonian stress relations: Egs. 5.29 & 5.30
o, ‘—p+2ﬂ2—u—%ﬂv q

ov 2 —~
Oy =PH2UT —T iV

ow 2 ~
o, =—p+2ﬂa——§ﬂv'q

Substitute velocity decomposition, Eqgs (8.17) into Egs. (5.29) &

(5.30) and average over time for incompressible fluid ( v-q=0 )
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8.5 Reynolds Equations for Incompressible Fluids

1) x-direction:

O, =—P=- pr)+2ﬂ¢ p 2#—

{a(v/v) oA )} ﬂ(ﬁﬁ_ﬁ]

/0x Ly ox oy
/ /

- L o(7/+u') a(vy+w) (Gu aw)

¥ o1 Yox | Ml (8.20 a)

(2) y-direction:

—ﬁy=—ﬁ+2u%
_ N ou
155

;ZH{VEJ (8.20 b)
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8.5 Reynolds Equations for Incompressible Fluids

g

(3) z-direction:

_ _ OW
P, =-P+2u—
oz

_ ou  ow
- + -
0z OX

__ (o @
oy " a (8.20 ¢)

Substitute Eq. (8.20) into Eq. (8.18)

(au _om
p —+ua—+V

+ +
OX oy 0z
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8.5 Reynolds Equations for Incompressible Fluids

op ow, o  du_du ow
X Py Oy oX ay2 "o oox

(GF ou'v' au'w'J
-p + +

OX oy 0z
By the way,
(1) = %(Z—?% %j 0 (- Continuity Eq. for incompressible fluid)

Therefore, substituting this relation yields
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8.5 Reynolds Equations for Incompressible Fluids

g

x-dir.: o0 _ou _ou _ou
Yo, +U +V + W
ot OX oy 0z

M, [ou? ouv au'w
= ——+ uVUu - + + 8.22 a
PY = T p( o az] ( )
y-dir.:
N N N N
Yo, +U—+V—+W
(a X oy azj
op _ [oviut av? av'w!
= pg, -2 T - p
2 x oy (8.22 b)
z-dir.:
Ear
yo, +U—+V—+W
X oz
_ g—§E+ V2 — 8WU[+&MW+8WE
P T T T Ty (8.22 c)
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8.5 Reynolds Equations for Incompressible Fluids

é
[Re]

1) Reynolds Equation of motion - solve for mean motion

— — 2
T, g, Dy oox - LB, a0
T ot ) OX; OX; P OX p OX;0X;

time rate of ?oi?e/
change of rate of rate of
momentum  r4te of dlffu3|ort1 of o force due  molecular

convection [nobmlen um by to mean diffusion of

of the urbuience pressure momentum

momentum by viscosity

2) Navier-Stokes Eq. — apply to instantaneous motion

2
%_Fu_%zxi 1ap+’u aui
ot ' ox, 0 OX.
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8.5 Reynolds Equations for Incompressible Fluids

é

= Reynolds Equations (temporal mean eq. of motion)

— Navier-Stokes form for incompressible fluid (RANS)

[Re] No. of Equations = 4

No. of Unknowns: 4 + 9 (turbulence fluctuating terms)

— 9 products of one-point double correlation of velocity fluctuation

(u iu'y)
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8.5 Reynolds Equations for Incompressible Fluids

é

8.5.2 Closure Mode/

Assumptions are needed to close the gap between No. of equations

and No. unknowns.

— Turbulence modeling: Ch. 10

m Boussinesq's eddy viscosity model — the simplest model

— ou
_uzzg_

* OX

ou / _U|VIOC%

£ (A)
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8.5 Reynolds Equations for Incompressible Fluids

#

Reynolds Equation in x-dir.:

ou _ou _ou _ou
Yo, +U—+V—+W
ot x oy oz
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8.5 Reynolds Equations for Incompressible Fluids

é
Substitute (A) and E-v into (B)

P
ou _8U+V8u+_8u
P Py oy E,=E,=€,=¢

_ g o, v +é) 82U+82U+62U
PO P PP VIR

ap

—+ p(v+e)VaU
OX

= P9, -

op _
= pg, -4 (u+ )V
OX

where Vv = kinematic molecular viscosity; ¢ = kinematic eddy viscosity;

H = dynamic molecular viscosity; 77 = dynamic eddy viscosity
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8.5 Reynolds Equations for Incompressible Fluids

é

8.5.3 Examples

(1) Turbulent flow between parallel plates

Apply Reynolds equations to steady uniform motion in the x-direction between

parallel horizon walls

M:o, w=0 < 2-D motion

<l

:%Evdt:O « unidirectional mean flow

v'#0
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8.5 Reynolds Equations for Incompressible Fluids

g

Incorporate these assumptions into Eqgs. (8.22)

Aoz

p+yV2 {al/ ou'v' 8U)N/J

_pgx_a_ ay

~.0=pg —@Hli— uv
toox oyt oy
oh ép ouw  ou'v

= — g——— S

x ox N Ty (A)
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8.5 Reynolds Equations for Incompressible Fluids

s —
y - p[g+u? /V/ )7\// ]

P

. 0=pg, -
Sy
0 ov'’?
a—y(p+yh)+p =0 (8.25)
Integrate (8.25)
p-+yh+ pv? = const. (8.26)

— In turbulent flow, static pressure distribution in planes perpendicular

to flow direction differs from the hydrostatic pressure by ov*
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8.5 Reynolds Equations for Incompressible Fluids

Rearrange (A)

i(F+7h)=—paw+ﬂaZU =£(—Pw+ﬂ ]
ox v oy Ty oy (D)
neglect since _

turbulence contribution
to shear is dominant

Integrate (D) w.r.t. y (measured from centerline between the plates)

d b 1 1
d—(p+7h)y= —pu'v'=rt
X

Ty =—PUV' oy

— 1 distribution is linear with distance from the wall for both laminar

and turbulent flows.
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8.5 Reynolds Equations for Incompressible Fluids

}té%:[/’(‘}wusskw o e

molds strecs N

Near wall, viscous
shear is dominant.
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8.5 Reynolds Equations for Incompressible Fluids

é
(2) Equations for a turbulent boundary layer

Apply Prandtl's 2-D boundary-layer equations

2
a_u+u8u Vau_ lop wou

o lox oy pox poy (8.7a)
au 6v
=0
ER 8y
—>ua—u+u@—0
x oy (8.7b)

ou ou u, v 1op pou
—+2U—+| V—tU— ==+
ot X oy 5)/ pox  poy
s \’
ou’ ouv

x & (A)
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8.5 Reynolds Equations for Incompressible Fluids

é

Substitute velocity decomposition into (A) and average over time

o(@+u)  ou
ot dt
o(T+u’? 8U2+8u_'2
OX dx OX
oU+u)(V+v) 6UV+6W
oy oy oy
10-—— 16p
——ZPrp) =
0 OX 0 OX
2 2—
_ﬁf%(g+u):£ﬂz%
p oy p oy

Thus, (A) becomes

ou ou® ouv 10p o ou”? ou'v'
' + + = +

ot ox oy poxX poy> ox oy (B)
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8.5 Reynolds Equations for Incompressible Fluids

g

Subtract Continuity eq. from (B)

ou _ou _ou 16p w0 ou’® ou'
+U—+V = ———+ — —

ot OX oy poOX poy> ox oy
(aﬁ _ou _8UJ op u? T auv
) +V

+U
ot OX oy

- X-€q.

Adopt similar equation as Eq. (8.25) for y~eq.

0=~ (P V")

Continuity eq.:
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iIn Shear flow

In order to close the turbulent problem, theoretical assumptions are
needed for the calculation of turbulent flows (Schlichting, 1979).

- We need to have empirical hypotheses to establish a relationship

between the Reynolds stresses produced by the mixing motion and the

mean values of the velocity components
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In Shear flow

g

8.6. 1 Boussinesq's eddy viscosily mode/

For laminar flow;

o8
|—/Udy
For turbulent flow, use analogy with laminar flow;
r=—puv=n
t dy (8.30)

where 7 = apparent (virtual) eddy viscosity

— turbulent mixing coefficient

~ not a property of the fluid

~dependson U ; npoc U
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In Shear flow
é

8.6.2 Prandltl's mixing length theory

~ express the momentum shear stresses in terms of mean velocity

m Assumptions

1) Average distance traversed by a fluctuating fluid element before it

acquired the velocity of new region is related to an average (absolute)

magnitude of the fluctuating velocity.

Ioc|v'|

(8.31a)
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in Shear flow

2) Two orthogonal fluctuating velocities are proportional to each other.

Tu] o e 1|32
y (8.31b)
Substituting (8.31) into (8.13) leads to
T=—,0W:p|2 aa | du
dy | dy (8.32)

Therefore, combining (8.30) and (8.32), dynamic eddy viscosity can be

expressed as

du
= pl2| ==
n=p dy

(8.33)

— Prandtl's formulation has a restricted usefulness because it is not

possible to predict mixing length function for flows in general.
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in Shear flow

[Re] Prandtl's mixing-length theory (Schlichting, 1979)
Consider simplest case of parallel flow in which the velocity varies only

from streamline to streamline.

¥
7~ N\
<
Il
=
—~
<
~

<
I

=
I

o

Shearing stress is given as

—— o

1
Xy
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8.6 Mixing Length and Similarity Hypotheses
in Shear flow

© Simplified mechanism of the motion

it |
- L'Z(té_ )
Wiy +4) -
L4y 4 P
EC%"’E) ﬂ’// .
o _ 3’
i e 77 r777 >¢6

1) Fluid particles move in lump both in longitudinal and in the transverse

direction.
2) If a lump of fluid is displaced from a layer at to a new layer, then, the

difference in velocities is expressed as (use Taylor series and neglect

high-order terms)
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in Shear flow

Au =T(y)-u(y,-1) = I(ZUJ V' >0
Y=¥1

where /= Prandtl's mixing length (mixture length)

For a lump of fluid which arrives at upper layer from the lower laminar
_ _ du ,
Au, =T(y, +1)-u(y,) = I(d_J V' <0
Y=

3) These velocity differences caused by the transverse motion can be

regarded as the turbulent velocity fluctuation at

&)
dy Y1

= Ay, |+] Au, ) =1

(2)
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in Shear flow

o Physical interpretation of the mixing length /

= distance in the transverse direction which must be covered by an

agglomeration of fluid particles travelling with its mean velocity in order

to make the difference between it's velocity and the velocity in the new

laminar equal to the mean transverse fluctuation in turbulent flow.

4) Transverse velocity fluctuation originates in two ways.

T . o Laster £luid

o slower .+
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in Shear flow

5) Transverse component is same order of magnitude as

v'| =const- |u’| :const-lz—; (3)

6) Fluid lumps which arrive at layer with a positive value of v’(upwards

from layer) give rise mostly to a negative v".

SLu'vi< O

u'vt = —cfu'| [v'| (4)

where 0 <c <1
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In Shear flow
é

Combine Egs. 2-4

du
dy

do
dy

u'v'=—constant- —I?

Include constant into /(mixing length)

V_

du
dy

du
dy (5)

—1?

Therefore, shear stress is given as

du
dy

duo

r=—pu'v'=pl?| — dy (6)

— Prandtl's mixing-length hypothesis
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in Shear flow

8.6.3 Von Karman's similarify hypothesis

oAssumptions

~Turbulent fluctuations are similar at all point of the field of flow

(similarity rule).

— Turbulent fluctuations differ from point to point only by time and length

scale factors.

Velocity is characteristics of the turbulent fluctuating motion.

For 2-D mean flow in the x - direction, a necessary condition to secure

compatibility between the similarity hypothesis and the vorticity transport

equation is
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In Shear flow
g

| du/dy dU_IdZU

d*u /dy’ dy  dy’
L
du/dy

where x = empirical dimensionless constant

Substituting (A) into (8.32) gives

, (dT/dy)*
(d2T / dy?)?

T = pK

(8.35)

— Von Karman's similarity rule
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In Shear flow
é

[Re] Prandtl's velocity-distribution law

For wall turbulence (immediate neighborhood of the wall)

dy (1)

du 1 T U,

dy_K‘y o, :Ky (2)

where u. =,/% = shear velocity; x =von Karman const= 0.4
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in Shear flow

Integrate (2) w.r.t. y

UZ&lny-l-C (3)

K

— Prandtl's velocity distribution law

Apply Prandtl's velocity distribution law to whole region

u=0_ aty=h

__ U.
U . _;Inh+C (4)
Subtract (3) from (4) to eliminate constant of integration

u.—-uo 1 h

. xy (5)
— Prandtl's universal velocity-defect law
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in Shear flow

Homework Assignment # 5

Due: 1 week from today

8-1. The velocity data listed in Table were obtained at a point in a
turbulent flow of sea water.

1) Compute the energy of turbulence per unit volume.

2) Determine the mean velocity in the x-direction,U, and verify that u'=0.
3) Determine the magnitude of the three independent turbulent shear

stresses in Eq. (8-21).

* Include units in your answer




8.6 Mixing Length and Similarity Hypotheses 13/110
In Shear flow

“ cm/s cm/s cm/s cm/s

o0 Y -4.57 152

“ 95.10 061 0.00 -0.30
“ 103.02 853 ~3.66 -2.13
“ 99.67 5.18 -1.22 ~061
“ 92.05 ~2.84 ~061 030
“ 87.78 ~6.71 2.4 091
“ 92.96 -152 091 ~061
90.83 ~3.66 1.83 061
“ 96.01 152 061 091
“ 9357 -091 030 -061
“ 98.45 3.96 -1.52 -1.22
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