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Chapter 10

Turbulence Models and Their 
Applications
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10.1 Introduction 

10.1.1 The Role of turbulence models
 Why we need turbulence models?

▪ Turbulent flows of practical relevance 

→ highly random, unsteady, three-dimensional 

→ Turbulent motion (velocity distribution), heat and mass transfer 

processes are extremely difficult to describe and to predict theoretically.

▪ Solution for turbulent flows

1) Navier-Stokes equation (DNS)

- Exact equations describing the turbulent motion are known. 

- Numerical procedures are available to solve N-S eqs.
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10.1 Introduction 

- Computer simulations of the full N-S equation are usually limited to flows 

where periodicity of the flow can be assumed and the boundaries are 

simple, usually rectangular.

- Numerical grids used must be small enough to resolve the smallest 

significant eddy scale present in the flow, and the simulation must be 

carried out for a significantly long time that initial conditions have died out 

and significant features of the flow have evolved.

→ Storage capacity and speed of present-day computers are still not 

sufficient to allow a solution for any practically relevant turbulent flows.
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10.1 Introduction 

2) Reynolds equation (RANS)

- Average N-S equations to remove turbulent fluctuations completely 

-Describe the complete effect of turbulence on the average motion by using 

turbulence model

3) LES

- numerical resolution of only the large eddies
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10.1 Introduction 

 Turbulence Modeling

DNS:  direct numerical simulation of N-S eq.

LES:  numerical resolution of only the large eddies

RANS:  solution of Reynolds-Averaged N-S eq.

→ effects of all turbulent motions are accounted for by the turbulence 

model
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10.1 Introduction 

• LES 

- small-scale motion filtered out

- 3D/2D LES

i
i

x y z

u dxdydzu
x y z∆ ∆ ∆

=
∆ ∆ ∆∫ ∫ ∫
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10.1 Introduction 

• Hybrid approach

- High Re → wall model is needed
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10.1 Introduction 

 Turbulence 

▪ Scale of turbulence

- eddying motion with a wide spectrum of eddy sizes and a 

corresponding spectrum of fluctuation frequencies

i) Large-scale eddies:

- contain much of the kinetic energy and little of the vorticity

- eddies tend to be anisotropic

- The forms of the largest eddies (low-frequency fluctuations) are 

determined by the boundary conditions (size of the flow domain). 

- These large eddies gradually break down into smaller eddies.
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ii) Small eddies:

- have little kinetic energy but much vorticity

- The small eddies tend to be isotropic

- The forms of the smallest eddies (highest-frequency fluctuations) are 

determined by the viscous forces.

- several orders of magnitude smaller

→ In numerical solution, to resolve the small-scale turbulent motion, 109

to 1012 grid points would be necessary to cover the flow domain in three 

dimensions.

10.1 Introduction 
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▪ Classification of turbulence 

i) anisotropic turbulence ~ general turbulence; it varies in intensity in 

direction 

ii) isotropic turbulence ~ smallest turbulence; independent of direction 

(orientation)

iii) nonhomogeneous turbulence

iv) homogeneous turbulence ~ statistically independent of the location 

10.1 Introduction 
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10.1 Introduction 

Isotropic
turbulence
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10.1 Introduction 

 Turbulence models

~ a set of equations (algebraic or differential) which determine the

turbulent transport terms in the mean-flow equations and thus close the 

system of equations

▪ Simulation of turbulence 

1) Time-averaging approaches (models)

Name
No. of turbulent

transport eqs.

Turbulence quantities

transported

Zero equation model 0 None

One equation model 1 k (turbulent kinetic energy)

Two equation model 2 k, ε (turbulent energy, dissipation rate)

Stress/flux model 6 components (stress terms)

Algebraic stress model 2 k, ε used to calculate
i j

u u
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10.1 Introduction 

2) Space-averaged approaches

→ Large Eddy Simulation (LES)

- simulate the larger and more easily-resolvable scales of the motions 

while accepting the smaller scales will not be properly represented
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10.1 Introduction 
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10.2 Mean Flow Equation and Closure Problem 

10.2.1 Reynolds averaged basic equation 

▪ Navier-Stokes eq.

~ Eq. of motion for turbulent motion  

~ describes all the details of the turbulent fluctuating motion 

~ These details cannot presently be resolved by a numerical 

calculation procedure. 

~ Engineers are not interested in obtaining these details but interested 

in average quantities.
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▪ Definition of mean quantities by Reynolds

where  t2 - t1 = averaging time Φ = scalar quantity (temperature, 

concentration)

- Averaging time should be long compared with the time scale of the 

turbulent motion but small compared with that of the mean flow in 

transient (unsteady) problems. 

Example:  in stream t2 - t1 ~ 101 ~ 102 sec

10.2 Mean Flow Equation and Closure Problem 


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(10.1a)

(10.1b)
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▪ Decomposition of instantaneous values 

mean   fluctuations

Substitute (10.2) into time-dependent equations of continuity and N-S 

eqs. and average over time as indicated by (10.1) → mean flow 

equations

10.2 Mean Flow Equation and Closure Problem 

(10.2a)

(10.2b)



i i i
U U u 

   
 
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Continuity:                        

(10.3)

x-momentum:            

(10.4)

y-momentum:            

(10.5)

10.2 Mean Flow Equation and Closure Problem 
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z-momentum

(10.6)

Scalar transport: 

(10.7)

in which P = mean static pressure

f = Coriolis parameter 

ρ = fluid density 

SΦ= volumetric source/sink term of scalar quantity 

10.2 Mean Flow Equation and Closure Problem 
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Eqs. (10.3)~(10.7) do not form a closed set. 

▪ Non-linearity of the original N-S eq. and scalar transport eq.

→ introduce unknown correlations between fluctuating velocities and 

between velocity and scalar fluctuations in the averaging processes

= rate of transport of momentum = turbulent Reynolds 

stresses

= rate of transport of heat or mass = turbulent heat or mass 

fluxes 

10.2 Mean Flow Equation and Closure Problem 

2

, , , ; , ,
u uv uw uc vc wc
x y z x y z

                 


2 2( , , , ; .,)u v uv u etc

2 .u etc

.u etc 
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▪ In Eqs. (10.3)~(10.7), viscous stresses and molecular heat or mass 

fluxes are neglected because they are much smaller than their turbulent 

counterparts except in the viscous sublayer very near walls. 

▪ Eqs. (10.3)~(10.7) can be solved for average dependent variables when 

the turbulence correlation can be determined in some way. 

→ task of the turbulence models 

10.2 Mean Flow Equation and Closure Problem 
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▪ Level of a turbulence model

~ depends on the relative importance of the turbulent transport terms

For the turbulent jet motion, simulation of turbulence is important. 

For the horizontal motion in large shallow water bodies, refined turbulence 

modeling is not important because the inertial term in the momentum 

equations are balanced mainly by the pressure gradient and/or buoyancy 

terms.

→ The simulation of turbulence in heat and mass transport models is 

always important because the scalar transport equation does not contain 

any pressure gradient and/or buoyancy terms.

10.2 Mean Flow Equation and Closure Problem 
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10.3.1 Three-dimensional lake circulation and transport models
→ Quasi-3D model
▪ In most shallow water situations and especially in calculating wind-

driven lake circulation as well as continental shelf and open coast 

transport, vertical momentum equation can be reduced by the 

hydrostatic pressure approximation.

(a)

Simplifies the calculation of the pressure field 

Only horizontal two-dimensional pressure distribution must be calculated 

from the differential equations

The vertical variation of pressure follows Eq. (a).

10.3 Specialized Model Equations  

p
g

z



 


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10.3 Specialized Model Equations  
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10.3 Specialized Model Equations  

▪ Two ways of determining the horizontal variation of pressure

→ Two ways of surface approximation

1) Assume atmospheric pressure at the water surface 

→ calculate surface elevation ζ with kinematic boundary condition at the 

surface

(10.8)

With this kinematic condition, the continuity equation can be integrated 

over the depth H to yield an equation governing the surface elevation ζ.

0U V W
t x y
    
   

  
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2) Use rigid-lid approximation

- assume that the surface is covered by a frictionless lid

- allows no surface deformations but permits variations of the surface 

pressure

→ properly accounts for the pressure-gradient terms in the momentum 

equations, but an error is made in the continuity equations.

→ is valid when the relative surface elevation ζ /h is small 

→ suppresses surface waves and therefore permits longer time steps in 

a numerical solutions 

→ Bennett (1974) , J. Physical Oceanography, 4(3), 400-414

Haq and Lick (1975), J. Geophysical Res, 180, 431-437

10.3 Specialized Model Equations  
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10.3.2 Two-dimensional depth-averaged models
▪ For shallow water situations

~ vertical variation of flow quantities is small

~ horizontal distribution of vertically averaged quantities is determined

(10.9a)

(10.9b)

in which   H = total water depth = h + ζ

h  = location of bed below still water level 

ζ = surface elevation

10.3 Specialized Model Equations  

1
h

U U dz
H




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h

dz
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


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Average Eqs. (10.3)-(10.7) over depth 

continuity:     (10.10)

x-momentum: 

10.3 Specialized Model Equations  
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y-momentum:    

Scalar transport:

Shear flow dispersion (10.13)

10.3 Specialized Model Equations  
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where  = depth-averaged turbulent stress ( ) acting in xi-direction 

on a face perpendicular to xj ; τb = bottom shear stress; τs = surface 

shear stress;  = depth-averaged turbulent flux of 

in direction xi ; qs = heat flux through surface 

①Buoyancy effects 

~ cannot be represented in a depth-averaged model because the 

hydrodynamic model, (10.10) ~ (10.12), is not coupled to the scalar 

transport model, (10.13).

10.3 Specialized Model Equations  

ij
 uv

i
J ( )u or v     
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② Turbulent stresses and diffusion terms

▪ Vertical turbulent transport has been eliminated by the depth-

averaging and appear only as bottom stresses, τb as well surface 

stresses, τs and as surface flux, qs.

▪ Horizontal momentum transport by the turbulent motion

~ represented by  

~ These terms are often neglected in large water body calculations.

~ A turbulence model is needed when terms are important.

▪ Horizontal mass or heat transport by the turbulent motion

~ represented by  

~ A turbulence model is always needed.

10.3 Specialized Model Equations  

ij


i
J
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③ Dispersion terms

~ have same physical effects as turbulent terms but do not represent turbulent 

transport

~ due to vertical non-uniformities (variations) of various quantities (velocity, 

concentration)

~ consequence of the depth-averaging process

~ are very important in unsteady condition and require accurate modeling (Fischer 

et al., 1979)

[Re 1] Dispersion stress model 

For open flows in which vertical variations of the velocity components are 

significant, such as modeling of the secondary currents in channels, models should 

be incorporated in order to represent the dispersion stress terms.

10.3 Specialized Model Equations  
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i) Moment of momentum approach

~ use additional equations of moment of momentum equations

~ should solve additional transport equations

where    = velocities at the water surface in excess of mean velocity in the 

x-, y-directions

10.3 Specialized Model Equations  
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ii) Dispersion stress approach

~ Dispersion stress terms associated with the integration of the products 

of the fluctuating velocity components are directly calculated by 

incorporating vertical profiles of both longitudinal and transverse velocities

~ For the vertical profiles of both longitudinal and transverse velocities, 

several equations can be adopted (Rozovskii, 1961; Kikkawa et al., 1976; 

de Vriend, 1977; Odgaard, 1986).

Use de Vriend equation, then, the first term (S11) indicates the integration 

of the products of the discrepancy between the mean and the vertically 

varying velocity distribution in x-direction

10.3 Specialized Model Equations  
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10.3 Specialized Model Equations  
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10.3 Specialized Model Equations  

The second term (S12) indicates the integration of the products of the 

discrepancy in x-, and y-directions

The third term (S22) indicates the integration of the products of the 

discrepancy y-direction
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10.3 Specialized Model Equations  

iii) Gradient model → find existing theory

In analogy to eddy viscosity concept (Boussinesq, 1877), assume that 

the dispersion stresses are proportional to the mean velocity gradients

where  νd = dispersion viscosity coefficient 

' ' 1
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i j i i j j dh
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10.3 Specialized Model Equations  

[Re 2] Shear flow dispersion 

In direct analogy to the turbulent diffusion, mass transport by 

dispersion is assumed to be proportional to the gradient of the 

transported quantity (Gradient model).

where Γd = dispersive diffusivity of heat or mass 

→ dispersion mixing coefficient 

' ' 1
( )( )

i i i dh
i

U U U dz
H x






     
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10.3 Specialized Model Equations  

10.3.3 Two-dimensional vertical plane and width-averaged models
Examples:

- long-wave-affected mixing of water masses with different densities 

- salt wedges in seiche

- tide-affected estuaries 

- separation regions behind obstacles, sizable vertical motion 

Define width-averaged quantities 

(10.14a)

(10.14b)

in which B = channel width (local width of the flow) 
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10.3 Specialized Model Equations  

(1) Models for the vertical structure are obtained by width-averaging 

the original three dimensional eqs. 

continuity:                      

(10.15)

x-momentum: 

( ) ( ) 0BU BW
x z
 

 
 

2

0

( ) ( ) ( ) d
pB

BU BU BWU gB
t x z x x




   
    

    

2 2

1 1

0 0 0

2

0 0

1 1
( ) ( )

1 1
( ) ( )( )

(10.16)

wx
xx xz

y y

y y

B B
x z

U U dy U U W W dy
x z

dispersion stress


 

  


 

 
  

 

 
    

  



43/111

10.3 Specialized Model Equations  

z-momentum:  

scalar transport :  
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10.3 Specialized Model Equations  

where ρ0 = reference density 

pd =dynamic pressure 

~ pressure due to motion and buoyancy forces 

= static pressure - reference hydrostatic pressure 

(2) kinematic free surface condition 

(10.19)

(3) dispersion terms 

~ due to lateral non-uniformities of the flow quantities

0U W
t x
  
  
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10.3 Specialized Model Equations  

(4) Further simplification 

Replace z-momentum Eq. by hydrostatic pressure assumption

(10.20)

Replace   in x-momentum Eq. as

(10.21)

Integrate continuity Eq. (10.15) over the depth and combine with Eq. 

(10.19)

(10.22)
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10.4 Turbulence-Closure Models   

○ Turbulence model

~ represent the turbulence correlations  etc. in the mean-flow 

equations in a way that these equations are closed by relating the 

turbulence correlations to the averaged dependent variables

○ Hypotheses must be introduced for the behavior of these correlations 

which are based on empirical information. 

→ Turbulence models always contain empirical constants and functions.

→ Turbulence models do not describe the details of the turbulent 

fluctuations but only the average effects of these terms on the mean 

quantities. 

2, ,u uv u
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○ Parameterization of turbulence 

~ core of turbulence modeling 

~ local state of turbulence and turbulence correlations are assumed to 

be characterized by only a few parameters.

→ Two important parameters are velocity scale and length scale. 

○ Three steps of parameterization

1) choose parameters

2) establish relation between turbulence correlations and chosen 

parameters

3) determine distribution of these parameters over the flow field.
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[Re] Friction coefficient and mixing coefficient

For 1D flow models, parameterization of turbulence and its effects has 

been achieved by the use of friction coefficients (Chow, 1956) or mixing 

coefficients (Fischer et el., 1979).

→ In 1D calculations, the flow is assumed to be fully mixed by the 

turbulence over any cross section so that the only further effect that 

turbulence can have is to exert wall friction, which can be accounted for 

adequately by the use of friction coefficients.

But for multi-dimensional flow models, turbulence has been 

parameterized by constant or mixing-length-controlled eddy viscosities 

and diffusivities.
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10.4.1 Basic concepts
(1) Eddy viscosity concept

(1) Boussinesq (1877) introduced eddy viscosity, νt assuming that,  in 

analogy to the viscous stresses in laminar flow, the turbulent stresses are 

proportional to the mean velocity gradients.

(10.23)

where k = turbulent kinetic energy per unit mass; δij= Kronecker delta 

δij = 1 for i = j and δij = 0 for i ≠ j

(10.24)
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- This eddy viscosity concept is based on the close analogy between 

laminar and turbulent stresses, and has often been criticized as 

physically unsound.

- This concept has often been found to work well in practice because νt

can be determined to good approximation in many flows.

- Eq. (10.23) alone does not constitute a turbulence model.

- It provides the frame-work for constructing the turbulence model.

- The turbulence model is to determine the distribution of νt.
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▪ Eddy viscosity, νt

~ not a fluid property, and depends on state of the turbulence

~ may vary considerably over the flow field 

~ is proportional to a velocity scale , and a length scale L
(10.25)

→ it is actually the distribution of the velocity and length scales that can 

be approximated reasonably well in many flows.

V̂

∝ ˆ
t

VL
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(2) Eddy diffusivity concept

In direct analogy to the turbulent momentum transport, the turbulent heat 

or mass transport is assumed to be proportional to the gradient of the 

transported quantity, 

(10.26)

where  Γt= eddy (turbulent) diffusivity of heat or mass 

i t
i

u
x




  

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▪ Eddy diffusivity, Γt

~ is not a fluid property, like the eddy viscosity, and depends on state of 

the turbulence.

~ depends in general on the direction of the heat or mass flux → 

anisotropic

▪ Relation between eddy viscosity and eddy diffusivity 

→ use turbulent Prandtl (heat) or Schmidt number (mass), σt

(10.27)

where σt ~ is assumed to be constant, is usually less than unity

t
t

t




 
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10.4.2 Types of turbulence models
1) Classification based on the use of eddy viscosity concept

Classification of turbulence model would be according to whether the models use 

the eddy viscosity concept.

① Eddy viscosity model

② Non- eddy viscosity model:  Bradshaw et al.'s Model, 

Reynolds-stress equations

2) Classification based on the use of transport equations

① No transport model

∙ These models do not involve transport equations for turbulence quantities

∙ These models assume that the turbulence is dissipated by viscous action at the 

point where it is generated by shear

→ There is no transport of turbulence over the flow field.
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② Transport model

∙ These models employ transport equations for quantities characterizing 

the turbulence in order to account for the transport of turbulence in space 

and time.

∙ These models are adequate in cases where the status of turbulence at a 

point is influenced by the turbulence generation somewhere else in the 

flow or by the generation at previous times (history effects).

∙ These equations, similar to the mass/heat transport equation, contain 

terms representing both advective transport by mean motion and the 

diffusive transport by the turbulent motion
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3) Classification based on the number of transport equations

It is customary to classify turbulence models according to the number of 

transport equations used for turbulence parameters. 

① Zero-Equation Models

- Constant eddy viscosity (diffusivity) model

- Mixing-length model 

- Free-shear-layer model

② One-Equation Models

- k equation model

- Bradshaw et al.'s model: non-eddy viscosity model
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③ Two-Equation Models 

- k-ε model

- k-l model

③ Turbulent Stress/Flux-Equation Models

- Reynolds-stress equations

- Algebraic stress/flux models

~ employ transport equations for the individual stresses  

~ non-eddy viscosity model
i j

u u
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10.4.3 Zero-equation models
~ do not involve transport equations for turbulence quantities

~ assume that the turbulence is dissipated by viscous action at the 

point where it is generated by shear

~ there is no transport of turbulence over the flow field

~ employ the eddy viscosity concept

~ specify the eddy viscosity from experiments, by trial and error, 

through empirical formulae, by relating it to the mean-velocity 

distribution
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(1) Eddy viscosity (diffusivity) model

~ the simplest turbulence model

~ used for large water bodies in which the turbulence terms in the momentum 

equations are unimportant

~ use constant eddy viscosity (diffusivity) over the whole flow field 

~ The constant eddy diffusivity model is appropriate only for far-field situations

where the turbulence is governed by the natural water body and not by local 

man-made disturbances such as water intake or discharges.
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▪ Depth-variable viscosity/diffusivity 

· Open channel flow: νt has a nearly parabolic distribution with depth

· Plane jet: νt increases with the one-half power of the distance from the 

origin

▪ Depth-averaged viscosity/diffusivity

- Constant eddy viscosity (diffusivity) concept has its greatest importance in 

depth average calculation where only horizontal transport is considered.

*( ) 1t
z zdu
d d

ν κ  = −  
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- Constant eddy viscosity model is used in the depth-averaged model in 

which vertical momentum transport is not important, and heat and mass 

transfer cannot be separated from dispersion effect due to vertical non-

uniformity

[Re] The vertical transport of momentum is represented by the bottom shear.

▪ When turbulences are mainly bed-generated, as in the channel flow, the 

depth-mean diffusivity for the horizontal transport is given as

where h = water depth; u* = friction velocity; 

C = empirical constant ~ 0.135 for wide laboratory channels

*C hu 
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[Re] Mixing coefficients for 3D transport model

Turbulent diffusion coefficients

( ) ( ) ( )x y z
c c c c c c cu v w
t x y z x x y y z z

ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

*0.15x l duε ε= =

*0.15y t duε ε= =

*0.067z v duε ε= =
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▪ Mixing coefficients for 2D model

Depth-averaged 2D transport model is

The depth-mean diffusivities account for both turbulent transport and the 

dispersive transport due to vertical non-uniformities of velocity.

→ Mixing coefficients = dispersion coefficient + turbulent diffusion 

coefficients

2 2

2 2L T
c c c c cu v D D
t x z x z

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
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Turbulent diffusion in uniform velocity flow vs. 
Shear dispersion due to non-uniform velocity distribution (Daily and 

Harlemann, 1966)



66/111

10.4 Turbulence-Closure Models   

[Re] Elder’s formula based on logarithmic velocity distribution (1959)

L lD D ε= +


*0.15l duε =

*60 400l lD du ε= ≈

*5.93 40l lD du ε= ≈

T t tD D ε= +

*0.15t duε =

0.463 0.299
0.733

* *0.029t
n

D u W S
du u d

   =    
   

* 0.3 ~ 3.0 (2 ~ 20)t
t

D
du

ε= =
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▪ Mixing coefficients in numerical model

· In numerical calculations of large water bodies, additional processes are 

represented by the diffusivity.

1) Sub-grid advection

Owing to computer limitations, the numerical grid of the numerical 

calculations cannot be made so fine as to obtain grid-independent 

solutions.

→ All advective motions smaller than the mesh size, such as in small 

recirculation zones, cannot be resolved. Thus, their contribution to the 

transport must be accounted for by the diffusivity.
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2) Numerical diffusion (Truncation error)

The approximation of the differential equations by difference equations 

introduces errors which act to smooth out variations of the dependent 

variables and thus effectively increase the diffusivity.

→ This numerical diffusion is larger for coarser grids.

· An effective diffusivity accounts for turbulent transport, numerical 

diffusion, sub-grid scale motions, and dispersion (in the case of depth-

average calculations).

→ The choice of a suitable mixing coefficient ( DMT ) is usually not a 

turbulence model problem but a matter of numerical model calibration.

For 2D model, 
MT t t sgm ndD D ε ε ε= + + −
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(2) Mixing-length model 

▪ Application:

For near-field problems involving discharge jets, wakes, and the vicinity 

of banks and structures, assumption of a constant eddy viscosity is not 

sufficient. 

→ distribution of νt over the flow field should be determined

▪ Prandtl's mixing-length hypothesis (Prandtl, 1925)

Prandtl assumed that eddy viscosity νt is proportional to a mean 

representation of the fluctuating velocity     and a mixing-length lm.

(A)

V̂

ˆ
t m

V l 
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Considering shear layers with only one significant turbulent stress ( ) 

and velocity gradient , he postulated  

(B)

Combine (A) and (B)

(10.28)

→ The eddy viscosity is related directly to the local mean velocity gradient.

→ Therefore, the mixing length hypothesis involves a single parameter 

that needs empirical specification; the mixing length lm .

(A)

uv

/U z 

ˆ
m

U
V l

z





2
t m
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▪ Mixing length 

i) Boundary-layer flows along walls:

① Near-wall region

where  κ = von Karman constant ( 0.4)

② Outer region

where δ = boundary layer thickness

ii) Free shear flows:  mixing layers, jets, wakes

where b = local shear-layer width

m
l z

m
l 

m
l b
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Plane mixing
layer

Plane
jet

Round 
jet

Radial
jet

Plane
wake

0.07 0.09 0.075 0.125 0.16m
l

b
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▪ Effect of Buoyancy 

~ Buoyancy forces acting on stratified fluid layers have a strong effect 

on the vertical turbulent transport of momentum and heat or mass

→ eddy viscosity relations for vertical transport must be modified by 

introducing a Richardson number correction 

Munk-Anderson (1948) relation 

(10.29a)

(10.29b)

0.5
0

( ) (1 10 )
tz tz i

R   

    1.5

0
1 3.3tz tz i

R


   
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(stable stratification)             (10.30a)

(unstable stratification)     (10.30b)

where 

Subscript 0 refers to values during unstratified conditions (           ) 

Define gradient local Richardson number Ri as 

(10.31)

~ ratio of gravity to inertial forces

0
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▪ Limitation of mixing length model

1) The mixing length model has been applied mainly to two-dimensional 

shear-flows with only one significant velocity gradient.

2)Mixing-length distribution is empirical and rather problem-dependent. 

→ model lacks universality

3) Close link of eddy viscosity (diffusivity) with velocity gradient, i.e. νt = 

0 when , implies that this model is based on the assumption of 

local equilibrium of turbulence.

0i

i

U

x





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[Re] Local equilibrium of turbulence

~ Turbulence is locally dissipated by viscous action at the same rate as 

it is produced by shear.

→ Transport and history effects are neglected (turbulence generation at 

previous times).

→ This model is not suitable when these effects are important as is the 

case in rapidly developing flows, recirculating flows and also in 

unsteady flows.

▪ Mixing length model for general flows

(10.32)

~ very difficult to specify the distribution of lm in complex flow 

1
2
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∙ lm in general duct flows (Buleev, 1962) 

where δ = distance of the point at which lm is to be determined from wall 

along direction Ω; D = integration domain (= cross section of the duct)

▪ Heat and mass transfer 

The mixing-length hypothesis is also used in heat and mass transfer 

calculations. 

(10.33)

1 1
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where σt = turbulent Prandtl (Schmidt) number 

0.9 in near-wall flows

0.5 in plane jets and mixing layers

0.7 in round jets

∙ Buoyancy effect on σt

→ Munk-Anderson formula 

0
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∙ Shortcomings of mixing-length model for heat and mass transport

i) νt and Γt vanish whenever the velocity gradient is zero.

[Ex] For pipes and channels, 

In reality, 

However, 

ii) The mixing-length model implies that turbulence is in a state of local 

equilibrium.

→ Thus, this model is unable to account for transport of turbulence 

quantities. 

ⓐ
max

centerline 0.8( )
t t
 
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(3) Prandtl's free-shear-layer model

Prandtl (1942) proposed a simpler model applicable only to free shear 

layers (mixing layers, jets, wakes).

(10.34)

Table 10.1 Values of empirical constant C

m
l 

max min
V̂ U U 

max mint
C U U  

Plane mixing
layers

Plane
jet

Round
jet

Radial
jet

Plane
wake

0.01 0.014 0.01 0.019 0.026
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10.4.4 One-equation models
- This model accounts for transport or history effects (time-rate change) 

of turbulence quantities by solving differential transport equations.

- One-equation models determine the fluctuating velocity scale from a 

transport equation rather than the direct link between this scale and the 

mean velocity gradients.

(1) k-equation Model

Velocity fluctuations are to be characterized by where k is the 

turbulent kinetic energy per unit mass defined as 
k

2 2 21
( )

2
k u v w  
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∙ Eddy viscosity νt

→ Kolmogorov-Prandtl equation (10.35)

in which cµ' = empirical constant. 

∙ Turbulent Kinetic Energy (TKE) equation 

~ Exact form can be derived from the Navier-Stokes equation.

~ Exact equation contains certain higher-order correlations which must 

be approximated by models in order to achieve a closure of the 

equations.

ˆ
t

V L 

'
t

c kL 
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For high Reynolds number, this equation reads

rate of     advective diffusive transport         production by 

change      transport        due to velocity and      turbulent shear

of k due to mean  pressure fluctuations  stress = P

motion 

(10.36)

buoyant production  viscous dissipation

/ destruction into heat = ε
due to buoyancy

force = G

new unknown 
correlations

Mean
velocity
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P = transfer of kinetic energy from the mean motion to the turbulent 

motion (large scale eddies)

G = exchange between the turbulent kinetic energy k and potential 

energy

~ negative for stable stratification (k is reduced, turbulence is damped 

while potential energy of the system increases) 

~ positive for unstable stratification (k is produced at the expense of 

the potential energy)

ε = transfers kinetic energy into internal energy of the fluid ~ negative 

(sink)
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∙ Concepts used for k-equation model

①Energy cascade 

~ Kinetic energy extracted from mean motion is first fed into large scale 

turbulent motion. 

→ This energy is then passed on to smaller and smaller eddies by vortex 

stretching (vortex trail, vortex street) until viscous force become active and 

dissipate the energy. 

②Anisotropy vs. Isotropy

~ Large-scale turbulences are anisotropic, whereas small-scale turbulences are 

isotropic.

Because of interaction between large-scale turbulent motion and mean flow, the 

large-scale turbulent motion depends strongly on the boundary conditions.
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During the energy cascade process, energy is passed on to smaller 

eddies by vortex stretching. 

→ The direction sensitivity is diminished.

→ small-scale turbulence tend to be isotropic

▪ Modeled form of the k-equation

~ The exact k-equation contains new unknown correlations.

→ To obtain a closed set of equations, model assumptions must be 

introduced for these terms.

i) Diffusion term

~ In analogy to the diffusion expression for the scalar quantity ϕ, the 

diffusion flux of k is assumed proportional to the gradient k.
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in which σk = empirical diffusion constant.

ii) Reynolds stress

iii) heat (mass) flux

in which σt = turbulent Prandtl or Schmidt number
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iv) viscous dissipation

in which cD= empirical constant. 

Substituting i) ~ iv) into exact k-equation yields

(10.37)

~ This model is restricted to high Reynolds number flows;  

~ For low Reynolds number flows, a viscous diffusion term should be 

accounted for and empirical constants are functions of the turbulent 

Reynolds number, 
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▪ Special case of local equilibrium

~ Turbulence is said to be in local equilibrium when the rate of change, 

advection and diffusion terms in Eq. (10.37) are zero. 

→ Then, production of k is equal to dissipation. 

For non-buoyant shear layers,

(1)

2 3/2
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Substitute (1) into Kolmogorov-Prandtl expression [                   ]

Set lm = mixing length = , 

Then 

→ mixing-length model
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▪ Length-scale determination 

~ Because the length scale L appears both in Kolmogorov-Prandtl

equation and in dissipation term of the k-equation, this must be 

specified empirically. 

~ In most models, L is determined from simple empirical relations 

similar to those for the mixing length, lm.

→ Launder and Spalding (1972) for estuary; Smith and Takhar (1977) 

for open-channel

▪ Bobyleva et al. (1965) 's length scale formula 

~ similar to von Kaman's formula 
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where κ = von Karman's const.

= turbulence parameter

~ applicable to flows where turbulent transport is mainly in vertical 

direction

When the turbulence is in local equilibrium in the shear layer,

→ von Karman's formula

1
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(2) Bradshaw et al.'s Model 

→ -equation model

~ This model does not employ the eddy viscosity concept.

~ It solves a transport equation for the shear stress .

For 2D wall boundary layers, relation between k (normal stress) and  

(shear stress) is given as

(experiment)

Convert k-equation to -equation for steady flows

uv

uv

uv

1
0.3

uv
a const

k
  

uv
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(10.38)

in which 

→ empirical 

→ For the diffusion flux of      , the gradient-diffusion concept is not 

employed. Instead the diffusion flux is assumed to proportional to a 

bulk velocity,          .

3/2
11 1
2

max( )

advection diffusion production dissipation

uv uv
a a U uv

U V uvGuv uvx y y y L

 
            

1
2

max

12

uv yG f
U 

           

2

yL f 


    

uv

1
2

max( )uv
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▪ Transport of heat and mass 

- Find eddy viscosity (νt ) or the shear stress (      ) using one-

equation model.

- Use gradient-diffusion concept to calculate heat and mass transfer by 

turbulence

- Solve scalar transport equation 

i j
u u

t
t

t




 

i t
i

u
x




  

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• Advantage

① One-equation models can account for advective and diffusive 

transport and for history effects on the turbulent velocity scale. 

→ One-equation model is superior to the mixing-length model when 

these effects are important 

Examples:  non-equilibrium shear layers with rapidly changing free 

stream conditions, abrupt changes in the boundary conditions, shear 

layers in estuary with velocity reversal, heat and mass exchange in 

area with vanishing velocity gradients

② Buoyancy term appears automatically in the k-equation model.
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• Disadvantage 

① The application is restricted to shear-layer situation not applicable 

to more complex flows.

②The empirical formulas for calculating length scale in general flows 

so far been tested insufficiently.

→ For calculating general flows, the trend has been to move on to two-

equation models which determine the length scale from a transport 

equation.
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10.4.5 Two-equation models
(1) Types of two-equation models
Length scale L characterizing the size of the large, energy-containing eddies is 

also subject to transport processes in a similar manner to the kinetic energy k.

① Eddies generated by a grid are advected downstream so that their size at any 

station depends on their initial size. → history effect

② Dissipation destroys the small eddies and thus effectively increases the eddy 

size.

③ Vortex stretching connected with the energy cascade reduces the eddy size.

→ The balance of all these processes can be expressed in a transport model for L.
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▪ Length scale equations 

Length scale transport equation

The general form is given as

Length scale transport equation of which the exact form can be derived 

from Navier-Stokes eq. is given as

(10.39)

where σz , cz1 , cz2 = empirical constants 

m nZ k l

1 2

rate of advection diffusion production destruction
change

i z z
i i z i

Z Z Z kkL ZU c P c Z S
t x x k Lx

                
    
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P = production of kinetic energy 

S = secondary source term which is important near walls

∙ Mellor-Yamada (1982) model

Velocity scale – q

Length scale - L

(ii) Energy dissipation rate 

Use energy dissipation rate as a combination of length scale and energy

Chou (1945), Davidov (1961), Jones & Launder (1972)

i
i j

j

u
u u

x

        

3/2k
L

 
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~ The use of the ε–equation has been criticized because the process of 

dissipation is associated with the small-scale turbulence while it is the 

length scale L characterizing the large-scale, energy-containing eddies 

that needs to be determined.

~ However, the amount of energy dissipated is controlled by the energy 

fed from the large-scale motion through the spectrum to the small-scale 

motion.

→ ε may be considered a parameter characterizing the large-scale motion.

[Re] Other scales

Dissipation rate: kL Rotta (1968)

Frequency: Kolmogorov (1941)

Turbulence vorticity:  ω = k / L2 Spalding (1971), Saffman (1970)

1
2k L
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(2) Standard  k - ε model

The basic assumption is that the local state of turbulence is characterized 

by the two parameters k and ε .

ε model works better near walls than other equations. 

The ε-equation does not require a near-wall correction term S.

The model employs the eddy viscosity/diffusivity concept.

(10.40)

(10.41)

2

t

k
c




t
t

t




 
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[Re] Derivation

(a)

(b)

Substitute (b) into (a) 

Set 

Then

'
t

c kL 
3/2 3/2

D D

k k
c L c

L



  

3/2 2

' 'D
t D

c k k
c k c c 

 
 

'
D

c c c 

2

t

k
c


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Exact ε - equation can be derived from N-S equations for fluctuating 

vorticity. 

→ rate of change + advection = diffusion + generation of vorticity due 

to vortex stretching + viscous destruction of vorticity 

→ need model assumptions for diffusion, generation, and destruction 

terms (diffusion is modeled with gradient assumption).

▪ Modeled ε -equation

(10.42)

2

1 3 2
( )

rate of advection diffusion generation-destruction
change

t
i

ii i

U c P c G c
xt x x k k  



    


                
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where P = stress production of kinetic energy k;

G = buoyancy production of kinetic energy k

▪ Complete k - ε model

(10.43)        

(10.44)

Table 10.3 Values of constants in the  model

jt i i t
i t i

i i k i i j j t i

UU Uk k k
U g

t x x x x x x x

 
  

 

                             

 
2

1 23
t

i
i i i

U c cP c G
t x x x k k 



    


               

cµ c1ε c2ε σk σε c3ε

0.09 1.44 1.92 1.0 1.3 1 (G>0 ), 0-0.2 (G<0 )
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y-momentum:   

(10.47)

Scalar transport:   

(10.48)

2 ( ) ( )( ) ( ) ( ) 1 1yx yy sy by
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▪ Turbulence model

Assumptions;

~ depth-averaged turbulent stress ( ) acting in xi -direction on a 

face perpendicular to 

(10.49)

~ depth-averaged flux of in direction xi

(10.50)
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 uv

j
x

2
3

ij ji
t ij

j i

UU
k

x x


 



          




i
J ( )u or v     

i
t

i

J

x


 






108/111

10.4 Turbulence-Closure Models   

with

(10.51)

(10.52)

where  are depth-averaged values

The variation of is  determined from the following transport 

equations

(10.53)        

(10.54)
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where

(10.55)

→ production of due to interaction of the turbulent stresses with the 

horizontal mean velocity gradients

(10.56)

(10.57)

(10.58)

(10.59)

(10.60)

cf = friction coefficient
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▪ PkV, PεV

~ All terms originating from nonuniformity of vertical profiles are 

assumed to be absorbed by the additional source terms, PkV, PεV.

~ stems from the significant vertical velocity gradients near the bottom

~ relatively large turbulence shear stresses in the near-bottom region 

produce turbulence 

~ depends strongly on the bottom roughness, via the friction velocity, 

U*

▪ e*

For wide laboratory flume, e* = 0.15

*

*

te
U h


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For real rivers, e* = 0.60 (Fischer et al., 1979)

→ The diffusivity obtained in real rivers accounts not only for turbulent 

transport but also for dispersive transport due to vertical non-

uniformities of scalar quantities and velocity components.

When significant secondary motions in cross-sectional planes are 

present, relatively small non-uniformities of temperature or 

concentration may cause relatively large dispersion contribution to the 

Φ -Eq.

In natural rivers, secondary motions may arise from large-scale 

irregularities in the river bed and from rivers bends.

σt = 0.5
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▪ Assessment of two-equation models

i) Advantage

➀Two-equation models account for the transport of the turbulent 

velocity scale and the length scale.

➁Two-equation models are the simplest ones that promise success for 

those flows for which the length scale cannot be prescribed 

empirically in an easy way. 

Examples: separated flows, complex shear layers

➂With efficient solution procedure, the additional solution of the length 

scale equation is not computationally expensive.
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➃ The model is one of the most widely tested and successfully applied 

turbulence models.

➄ The depth-averaged version has been applied with success in a 

number of different calculations of the flow field and pollutant 

transport processes.

→ This model was found to be particularly suitable for situations 

involving the interaction of turbulence generated both at the river bed 

and by the shear layers of discharging jets.
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ii) Limitation of model

➀ k - ε model uses the same eddy viscosity/diffusivity for all Reynolds 

stress and heat or mass flux components.

→ The standard k – ε model assumes an isotropic eddy 

viscosity/diffusivity and hence constructs a direct relation to one 

velocity scale .

But in certain flow situations the assumption of an isotropic eddy 

viscosity is too crude.

k
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➁ It cannot produce the turbulence driven secondary motions in 

straight open channels.

→ It does not allow any directional influences on the stresses and fluxes, 

for example, those due to buoyancy forces. 

➂ In order to allow for the non-isotropic nature of the eddy 

viscosity/diffusivity, the k – ε model should be refined by introducing a 

so called algebraic stress/flux model to replace the simple combined 

relations, Eq. (10.23) and Eq. (10.41).
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