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Objectives
- Define methods of flow description

- Study velocity and acceleration field

- Classify fluid motions
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Chapter 3 Kinematics of Fluid Motion
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2.1 The Velocity Field
g

velocity, acceleration ~ vector quantities
qv) a

Cartesian coordinates

X y Z
u v W
a a a
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2.1 The Velocity Field
g
2.1.1 Lagrangian approach

- follow a particular particle through the flow field — path /ine

- fluid properties associated with this particle change as a function of time

- coordinates of moving particles are represented as function of time

At t = 1, coordinates (position) of a particle A(a, b, c)
At t =t position of a particle (X, Y, 2)

Particle A at

x = f(a,b,ct) (2.1a) patcle st | P e

r,(t + 01)

y = f,(a,b, c,t) (2.1b)

z = f,(a, b, c, 1) (2.1¢) P
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2.1 The Velocity Field

[nstantaneous
streamline at t=¢;

€
@ b
Pathline for particle a
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2.1 The Velocity Field

-Path line (& M)
~ the position is plotted as a function of time

= trajectory of the particle — path line

~ since path line is tangent to the instantaneous velocity at each point

along the path, changes in the particle location over an infinitesimally

small time are given by

y
dx =udt; dy =vdt; dz =wdt
_oxdy & Y
T T (2.22)
dx dy dz dt (2.2b) dx u

u v w 1 X
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2.1 The Velocity Field
EE————————————————— .-

o
ot ot ot
ou  o0°x
_ov 0%y
ay = E = ? (2.3b)
ow  0°z
a = E = ? (2.3c)
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2.1 The Velocity Field
—eeeeeeeeeenoornnoooooee AN

Lagrangian description is commonly used in the solid dynamics because it

is convenient to identify a discrete particle, e.g. center of mass of spring -

mass system.

However, it is cumbersome when dealing with a fluid as a continuum of particles

due to deformation of fluid.

~ We are not usually concerned with the detailed history of an individual particle,

but rather with interrelation of flow properties at individual points in the flow field. —

Eulerian description
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2.1 The Velocity Field
— e A

[Re] Examples of Lagrangian description in fluid mechanics

- Numerical fluid mechanics simulations using LPTM (Lagrangian Particle
Tracking Model)

- Tagging of individual fluid particles in the experiments or field survey
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2.1 The Velocity Field

2.1.2 Eulerian method —,

- use the field concept e

- observer fixes attention at discrete points

- notes flow characteristics in the vicinity of a fixed point as particles pass by

- focus on the fluid which passes through a control volume that is fixed in

space

- familiar framework in which most fluid problems are solved

- instantaneous picture of the velocities and accelerations of every particle

— streamline

- Velocities (pressure, density) at various points are given as function of time




2.1 The Velocity Field
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g
= Velocity field

Control volume

G=iu+jv+kw (@4 P(”
; V.2 X, Vi <..!|l
where U = f (X,y,z,1) (2.5a) ‘
V = fz(x;y,z,t) (2.5b)
W = fg(X,Y;Z,t) (2.50)
X, Y, Z,1 = independent variables
i,k =

unit vectors
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2.1 The Velocity Field
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2.1 The Velocity Field
g
= Speed

| = (u2 +V° +W2)1/2 (2.6)

0O

q=|

A change in velocity results in an acceleration.

The acceleration may be due to a change in

speed and/or direction.
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2.1 The Velocity Field

[Re] Two views

Eulerian method: record the temperature at the fixed point 0

Lagrangian method: follow particle A

If enough information in Eulerian form is available, Lagrangian information

can be derived from the Eulerian data, and vice versa.

Y //
Location O:

T = T(xg, yg, 1)~ Particle A:
T, =T,

A

——¥o

Yo
i

- . ] )
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2.1 The Velocity Field

Logging the

= [agrangian measurements position of GPS

floaters

® @
e 0o®
R A @ @@ (%) ®
" g e® @ @
Advection ) @ QQ
® ®® @
N @ © @
Injection
; @ @
Point [,
Diffusion

Park, I., Seo, |I. W., Kim, Y. D., and Han, E. J. (2017).

“Turbulent Mixing of Floating Pollutants at the Surface of

the River,” Journal of Hydraulic Engineering.

<GPS floater>
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2.1 The Velocity Field
— e A

= FEulerian measurements

Shin, J. H., and Seo, I. W., and Baek, D. (2020). “Longitudinal and
Transverse Dispersion Coefficients of 2D Contaminant Transport Model

for Mixing Analysis in Open Channels,” Journal of Hydrology.
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2.2 The Acceleration Field

é
Obtain the acceleration field if the velocity field is known in the Eulerian

description.

(1) Total change in velocity (material /substantial derivative)

= sum of partial derivatives of the four independent variables, x, y, z, t
a—udt + a—udx + a—udy + a—udz
ot OX oy 0z

X—dir : du

. .. du ou odudx oudy Oudz
total derivative: — = + + == 4 =7
dt o0 oxdt oydt oz dt

= — +U— +V— + W— (2.6a)
local change ot OX oy Oz convective change
due to unsteadiness ] . due to translation
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2.2 The Acceleration Field

g

y—dir : dv _ + uﬁ—v + vé—V + wa—V (2.6b)
dt ot OX oy 0z
. dw ow OW OW OW
z—dir : = +

Uu— 4+ v— + W— (2.6¢)

dt ot OX oy 0z

(2) Total rate of density change of compressible fluid

p = p(Xy,z1)

d 0 0 0 0 0 0
dt ot OX oy 0z ot OX




2.2 The Acceleration Field
I EEEEEEEE—————————————————————————

(3) Acceleration

- time rate of change of velocity

a=—"=224(§-V
i o FAVa

d =ia, + ja, + ka,
du ou ou ou ou ou ou

a = =

+U— + V— + W— = + U —

Toodt et OX oy oz ot ' Ox,
dv ov oV oV oV OV oV
+ W + U.

dw

Y . .
L convective acceleration
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(2.8)

(2.9)

(2.10a)

(2.10b)

(2.10c)
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2.3 Steady versus Uniform motion

g

i) steady motion: no changes with time at fixed point «— unsteady motion

Z_q = 0 — local acceleration = 0
t

i) uniform motion: no changes with space «— non-uniform motion

(§-V)q = 0 — convective acceleration = 0
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2.3 Steady versus Uniform motion

=  Non-uniform flow— convective acceleration

@ |
|
|
|

_ i=VamV; €V
”—‘:’1 u=Vy,>V, it Rk I
3 i SO —
> — . 0 X
> > = x
> =1 [ -
» /XZ —__
.xl x3
da,
0
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Appendix
e ——e Y

(1) Vector differential operators:y — "del" or "nabla"

OX @y 07

Gradient: Vf = grad f = a;
OX oy 0z
Divergence: Vv .q = div g
oXx oy oz

(2) Vector product
) dot product — scalar

a-b = |dlfo| cos¢




24/26

Appendix

g
¢ = angle between the vectors
i-i=j-j=k-k=1 (cos0O =1)

i-j=j-k=j-i=k-j=0 (.- cos90 =0)

Direction = perpendicular to the plane of aand b - right-hand rule

e - — .~8 78 _’6
g-V=(0{u+ jv+kw)-i—+ j— + k—
v ( J )- (= 15 =)

0 o
=U— + V— + W—

OX oy 0z
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Appendix
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Appendix

Vig=0 — P + — = 0 — Laplace Eq.

grad (u+v) =V Uu+v)=Vu + Vv
div U+Vv)=V-U+V)=V-U+ V-V
grad (uv) = V (uv) = vVu + uvyv

div (uv) = V-(uv) = Vu-v + uv-v

divgrad u = V-Vu = V°u




