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Lecture 7

Continuity, Energy, and Momentum
Equations (3)

¢ /‘\ System boundary
at time t+dt

Control surface and
system boundary
at time ¢




Lecture 7 Continuity, Energy, and Momentum Equation&”

(3) —

Contents

7.1 Linear Momentum Equation for Finite Control Volumes

7.2 The Moment of Momentum Equation for Finite Control Volumes

Objectives
- Derive the momentum equation by applying Newton’s 2" law of motion
and Reynolds Transport Theorem

- Derive the moment of the momentum equation by applying Newton's 2nd

law to rotating fluid masses
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7.1 Linear Momentum Equation for Finite Control Volumes

g

/. 1.1 Momentum Principle

The momentum equation can be derived from Newton's 2nd law of

motion W6 d ( q) 4N
= . q mq M
gt dt dt (7.1)
M = linear momentum vector = mg

F = external force

‘boundary (surface) forces: [ﬁormal to boundary - pressure, |fp
tangential to boundary - shear, |fS

T
I

. body forces - force due to gravitational or magnetic fields, Ifb
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F +F + K =— (7.2)
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/.1.2 The general linear momentum equation . ...

Consider change of momentum

—

dM
T = total rate of change of momentum awdh, is| Negative

FIG. 4-1. Flow through a finite control
volume of arbitrory shape.

= net momentum flux across the CV boundaries

+ time rate of increase of momentum within CV

4) qp(q dA I dodV  (7.3) < Reynolds Transport Theorem

where Gp(G-dA)= momentum flux = velocity x mass per time

dA = vector unit area pointing outward over the control surface
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,‘ Confine of Auid at
-,r_____..-timﬂ [4dl

Control surface
confining flid at
time |

(1) q (2) \

dﬁg _+"  gudA, is | Positive

-

FIG. 4-1. Flow through a finite control
velume of arbitrary shape.

q,dA, is | Negative
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é
Substitute (7.3) into (7.2)

F, + F, + F, = ¢ _dp(q-dA) + jcv dpdV (7.4)

For steady flow and negligible body forces

F, + Fo= ¢ _do(4-dA) (7.5)

= Eq.(7.4)

» |tis applicable to both ideal fluid systems and viscous fluid systems

involving friction and energy dissipation.

» |tis applicable to both compressible fluid and incompressible fluid.
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g
« Combined effects of friction, energy loss, and heat transfer appear

implicitly in the magnitude of the external forces, with corresponding

effects on the local flow velocities.

« Knowledge of the internal conditions is not necessary.

« We can consider only external conditions.
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7.1 Linear Momentum Equation for Finite Control Volumes

g

/7. 1.3 Inertial control volume for a generalized apparatus

* Three components of the forces

= = = L 9
x—dir.: F, +F, +F, =<J’>CSup(q.dA)+ajCVupdv

L I,
y—dir.: F, +F +F ZCIDCSVp((j-dA)+aJ-CVVpdV

.\ O
:Cﬁcs Wp(q.dA)+ajCV wo dV (7.6)
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* For flow through generalized apparatus

—

. = = 0
X —dir. : pr+st+Fbx_LUde_ Lu,on + ELV updv

« For 1D steady flow,

v 7/ A ////’,ﬁ%\ﬁ%fgﬁeﬂft _}f_l;gd
' 2 S -
/2

0
~ Jo, AP AV =0

Control surface s
confining fluid
at time ¢

e e e e ————
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* Velocity and density are constant normal to the flow direction.

—

x—dir.. F, +F, +F, =>"F =(V,pQ),-(V,,Q),
= Vprz Q, - VX1101Q1 = Q,O(VXZ ) Q'O( Xout -V ”)

y— dir.: ZFy=(Vy,OQ)2—(Vy,OQ)1 Q= p,Q, =Qp

Confi f fiuid

z—dir.: Y F,=(V,pQ),-(V,pQ), sy

where /= average velocity in flow

direction
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g

« Non-uniform velocity profile

If velocity varies over the cross section, then introduce momentum flux

coefficient

—

[dp (5-dA) = KV (pVA)

=i

Y

[dpdQ = KV pQ

‘ f(jde
VpQ
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——————————————————————————————————————————————————
where
/= magnitude of average velocity over cross section = Q/A
V = average velocity vector
K,,= momentum flux coefficient > 1

= ( 1.33 for laminar flow (pipe flow)

1.03-1.04 for turbulent flow (smooth pipe)

ZFX = (KmVXIOQ)g o (Kmvpr)l
2 F, = (KaVyeQ), = (KiV,oQ),
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g

[Cf] Energy correction coefficient

yo,
« - J.qudQ

e

P72
-V
> Q
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é

[Example 7-1] Continuity, energy, and linear momentum with unsteady flow

_ Assumptions:
A large tank mounted on rollers is P

V, =0
filled with water to a depth of 16 ft
above a discharge port. Attime ¢= p,= P, =0

. o = const.
0, the fast-acting valve on the i h, = 0 (datum)
discharge nozzle is opened.

Water surface

at t=0
. . (D A(1)
Determine depth A, discharge rate i = Control_
L | Ay=20 £t
Q, and force F necessary to keep B | SETTTTS RIS

. Water surface
at £{=50 sec

the tank stationary at 1= 50 sec.
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7.1 Linear Momentum Equation for Finite Control Volumes

g

Apply continuity, energy, and linear momentum equations

op G A —
(7.7) jCVEdv +<j>CS pG-dA=0

78) dt dt dt
| _4 (P I I S
— CS(;+u+gh+7jp(q-dA) + EICVePdV
L P I
(7.9) F,+F +F = <j>csqp(q.dA) + ajcvqpolv
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g

i) Use integral form of continuity equation, Eq. (7.7)
0
~Jo,PaV =[pa,dA - [ pa.dA,
dv = Adh, pq.dA = 0 (because no inflow across the Section 1)

O ¢h
pA—[ dh == pV,A,

dh
A = VoA ®)

ii) Energy equation, Eq. (7.8)

~ no shaft work

~ heat transfer and temperature changes due to friction are negligible
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7 s

0
= CS(;+ u+ gh +q7] (q dA) + ajcvepdv

e = energy per unitmass = U + gh + —

2

| = cﬁcs[u + P gns q?]p(q’-d,&)

Yo,

2 2

=(u+£+gh+q—] PV, A, —[u+£+gh+q—j PV, A
o, 2 ), o, 2 ),
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g

2
=£u+£+gh+q—j oV, A, (V, = 0)
P 2 ),

0 0 q
= 2[ epdv = = dv
~lepdv = — Cv(u+gh+722/j,0

" nearly constant in the tank

A dh

except near the nozzle

O ¢h
= A&pajo (u + gh)dh

. 0 = u+£+gh+q—2 pVA2+A&p£jh(u+gh)dh
2 )¢ ot Jo

o,
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g

Assume p =const., p,= p,, =0, h, = 0(datum)

2
0 =uV,A + V—ZVZAZ + uAlﬁ + Alghﬁ (B)
2 dt \ dt\
dh
Substitute (A) into (B) A&E = -V, A
V2
0= WA, + ~2V,A, + U(=%7A) + gh(-V,A,)
V2
72V2A2 = ghV,A,

V, = ,/2gh (C)
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g
Substitute (C) into (A)

A2gh = - A

dh A,

— = ——=,/29dt

Jn ¥
Integrate

dh . h
Jh:ﬁ - ot_% 2gdt {h:h 2dh = | pn | }
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g

h o (\/1_ 01 2(22.2)tj

20

= (4 - 0.0201t)’

At t=50sec, h = (4-0.0201x50)" = 8.98ft

V, = \/2gh = \/2(32.2)(8.98) = 24.05 fps

Q, = (VA), = 24.05(0.1) = 2.405 cfs
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iii) Momentum equation, Eq. (7.4)

/ I / 1
o+ e F = dp(a-08) + 2 [ v

Il = Time rate of change of momentum inside CV is negligible

if tank area (A ) is large compared to the nozzle area (A,).

1= ¢ _dp(d-dA) = [g,00,0A — [g.paTA = V,0V,A,
-~ Fy =V A, =V, 00,

F =(24.05)(1.94)(2.405) = 112 Ib
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/7.2.1 The Moment of momentum principle for inertial reference systems

' M
Apply Newton's 2nd law to rotating fluid masses L

— The vector sum of all the external

moments acting on a fluid mass (Fx If) -
equals the time rate of change of the

moment of momentum (angular

momentum) vector (FxM ) of the fluid

mass.

Example: rotary lawn sprinklers, ceiling

fans, wind turbines
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o e el
0 & P ™ <— Control volume

e AN
Control volume \ ;

ul \ S N N Section (2)
\
\

—

——

z/
_ = #—Section (2)

Section (1)

Flow

()
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T =rx |E = —(fo) (710)

where

T = torque

I = position vector of a mass in an arbitrary curvilinear motion

M = linear momentum ' | ﬂ
Y t
o/ :
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g
[Re] Derivation of (7.10)

~ dMm
Eqg.(7.1): F = —
g. (7.1) m

Take the vector cross product of

FxF = de—M
dt
By the way,
i(Fxl\ﬁ) = d—er + de—M
dt dt t
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g
[Re] Torque T = Fx F

* translational motion —

Force - linear acceleration

e rotational motion —

Torque - angular acceleration 5
[Re] Vector Product "

V =adxb
Magnitude = |\/| = |a]  |p| Sin ¥ = area of parallelogram

direction = perpendicular to plane of a and b — right-handed triple
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a
5x(6+6):(§x6)+(§x6)

* External moments arise from external forces

(Fxlfp)+(FxlfS)+(r><Fb)=E(F><M)
Ll i

I

T, + T, + bza(er) (7.11)

— —

where T | T, T, = external torque
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/7.2.2 The general moment of momentum equation

dM . = .
(73— =¢ _dp(q-dA) + = dpdv

L o N
T +T +T, = C_'Scs(rxq)p(q’-dA)+— (Fxg)pdv (7.12)

angle between (,, and I,
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g

: =R _ = 0
x=dir.: T +T,+T, = qSCS(rqcosa)yzp(q-dA) + P Cv(rqcosa)yzpdv

|

_ L =y O
y—dir.: T +T,+ T, = @Cs(rqcosa)zxp(q-dA) + P CV(quOSa)ZX,OdV

N
I
o
=
_|
g
+
bl
_|_
=
[|
(@)
w
—~~
=
QO
(@)
o]
(@p)
)
N
R
ke
—~
ol
o
>3
N—
_|_
Q|
(@)
<
—~~
=
O
()
le]
(9p)
)
N
>
he)
o
<

(7.13)
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é
Homework Assignment # 3
Due: 1 week from today

7-1. Derive the equation for the volume rate of flow per unit width for the

sluice gate shown in Fig. 4-20 in terms of the geometric variable b, y; and
C. Assume the pressure in hydrostatic at y, and c.b and the velocity is
constant over the depth at each of these sections.

7-2. Derive the expression for the total force per unit width exerted by the

sluice gate on the fluid in terms of vertical distances shown in Fig. 4-20.
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7-3. Consider the flow of an incompressible fluid through the Venturi
meter shown in Fig. 4-22. Assuming uniform flow at sections (1) and (2)

neglecting all losses, find the pressure difference between these sections

as a function of the flow rate Q, the diameters of the sections, and the
density of the fluid, p. Note that for a given configuration, Q is a

function of only the pressure drop and fluid density.

(1)

B 2B e
O D, D
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7-4. Water flows into a tank from a supply line and out of the tank through

a horizontal pipe as shown in Fig. 4-23. The rates of inflow and outflow

are the same, and the water surface in the tank remains a distance A

above the discharge pipe centerline. All velocities in the tank are
negligible compared to those in the pipe. The head loss between the tank

and the pipe exitis A, (a) Find the discharge @ in terms of A, A,

and H, (b) What is the horizontal force, F, required to keep the tank

from moving? (c) If the supply line has an area A, what is the vertical

force exerted on the water in the tank by the vertical jet?
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7-5. Derive the one-dimensional continuity equation for the unsteady,

non-uniform flow of an incompressible liquid in a horizontal open channel

as shown in Fig. 4-29. The channel has a rectangular cross section of a
constant width, b. Both the depth, y, and the mean velocity, V are

functions of x and t.

\
Y0 =y0(x>t)

'

444 FIGURE 4-29




