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7.1 Linear Momentum Equation for Finite Control Volumes

7.2 The Moment of Momentum Equation for Finite Control Volumes

Objectives

- Derive the momentum equation by applying Newton’s 2nd law of motion

and Reynolds Transport Theorem

- Derive the moment of the momentum equation by applying Newton's 2nd

law to rotating fluid masses
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7.1.1 Momentum Principle

 The momentum equation can be derived from Newton's 2nd law of 

motion

boundary (surface) forces:   normal to boundary - pressure, 

tangential to boundary - shear, 

body forces - force due to gravitational or magnetic fields, 

7.1 Linear Momentum Equation for Finite Control Volumes

(7.1)
 d mqdq dM

F ma m
dt dt dt

   

M  mqlinear momentum vector

F  external force 

p
F

s
F

b
F

F 



4/36

where = body force per unit mass

7.1 Linear Momentum Equation for Finite Control Volumes

p s b

dM
F F F

dt
  

 ,b b
CV

F f dV  b
f

(7.2)
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7.1.2 The general linear momentum equation

Consider change of momentum

= total rate of change of momentum 

= net momentum flux across the CV boundaries 

+ time rate of increase of momentum within CV

where = momentum flux = 

= vector unit area pointing outward over the control surface

7.1 Linear Momentum Equation for Finite Control Volumes

dM

dt

 
CS CV

q q dVq dA
t

 


 
  (7.3)

 q q dA  velocity mass per time

dA

Reynolds Transport Theorem
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7.1 Linear Momentum Equation for Finite Control Volumes
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7.1 Linear Momentum Equation for Finite Control Volumes

Substitute (7.3) into (7.2)

 p s b
CS CV

F F F q q dVq dA
t

 


   
  (7.4)

For steady flow and negligible body forces

 p s
CS

F F q q dA   (7.5)

 Eq. (7.4)

• It is applicable to both ideal fluid systems and viscous fluid systems 

involving friction and energy dissipation.

• It is applicable to both compressible fluid and incompressible fluid.
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7.1 Linear Momentum Equation for Finite Control Volumes

• Combined effects of friction, energy loss, and heat transfer appear 

implicitly in the magnitude of the external forces, with corresponding 

effects on the local flow velocities.

• Knowledge of the internal conditions is not necessary.

• We can consider only external conditions.
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7.1 Linear Momentum Equation for Finite Control Volumes

7.1.3 Inertial control volume for a generalized apparatus

• Three components of the forces

 . :
x x xp s b

CS CV
x dir F F F u u dVq dA

t
 


    

 

 . :
y y yp s b

CS CV
y dir F F F v v dVq dA

t
 


    

 

 . :
z z zp s b

CS CV
z dir F F F w w dVq dA

t
 


    

  (7.6)
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7.1 Linear Momentum Equation for Finite Control Volumes

 For flow through generalized apparatus

2 1
. :

x x xp s b
CV

x dir F F F u dQ u dQ u dV
t

  


     
  

• For 1D steady flow, 

0
CV

q dV
t





 
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7.1 Linear Momentum Equation for Finite Control Volumes

• Velocity and density are constant normal to the flow direction. 

   
2 1

.:
x x xp s b x x xx dir F F F F V Q V Q      

1 1 2 2
Q Q Q   

   
2 12 12 2 1 1 out inx xx xx x

V VV VV Q V Q Q Q       

   
2 1

.: y yy
V Q V Qy dir F    

   
2 1

.: z z z
z dir F V Q V Q   

where V = average velocity in flow 

direction
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7.1 Linear Momentum Equation for Finite Control Volumes

If velocity varies over the cross section, then introduce momentum flux 

coefficient

   m
q K V VAq dA 

m
q dQ K V Q 

m

q dQ
K

V Q







• Non-uniform velocity profile
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where 

V = magnitude of average velocity over cross section = Q/A

= average velocity vector 

Km = momentum flux coefficient  ≥ 1 

= 1.33 for laminar flow (pipe flow)

1.03-1.04 for turbulent flow (smooth pipe)

7.1 Linear Momentum Equation for Finite Control Volumes

V

   
2 1x m x m x

F K V Q K V Q  

   
2 1m y m yy

K V Q K V QF   

   
2 1z m z m z

F K V Q K V Q  
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7.1 Linear Momentum Equation for Finite Control Volumes

[Cf] Energy correction coefficient

2

2

2

2

e

q dQ

K

V Q






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7.1 Linear Momentum Equation for Finite Control Volumes

A large tank mounted on rollers is 

filled with water to a depth of 16 ft

above a discharge port.  At time t = 

0, the fast-acting valve on the 

discharge nozzle is opened. 

Determine depth h,  discharge rate 

Q, and force F necessary to keep 

the tank stationary at t = 50 sec .

[Example 7-1] Continuity, energy, and linear momentum with unsteady flow

1

2

2

Assumptions:

0

const.

0

0 (datum)

atm

V

p p

h







 





16/36

7.1 Linear Momentum Equation for Finite Control Volumes

Apply continuity, energy, and linear momentum equations

0
CV CS

dV q dA
t





  

 (7.7)

 
2

2

shaft shear

CS CV

W WQ

dt dt dt

p q
e dVu gh q dA

t

 

 


 

  
     

 
 

(7.8)

 p s b
CS CV

F F F q q dVq dA
t

 


   
 (7.9)
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i) Use integral form of continuity equation, Eq. (7.7) 

ii) Energy equation, Eq. (7.8)

~ no shaft work 

~ heat transfer and temperature changes due to friction are negligible 

7.1 Linear Momentum Equation for Finite Control Volumes

(because no inflow across the Section 1)

1 2n n
CV

dV q dA q dA
t

  


 
   

1 1
, 0ndV A dh q dA 

1 2 2
0

h

A dh V A
t

 


  
 

1 2 2

dh
A V A

dt
  (A)
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e = energy per unit mass = 

7.1 Linear Momentum Equation for Finite Control Volumes

Q

dt

 shaft
W

dt


 shear

W

dt




 
2

2CS CV

p q
e dVu gh q dA

t
 



  
     

 
 

I II

2

2

q
u gh 

I =  
2

2CS

p q
u gh q dA



 
    

 


2 2

2 2 1 1

2 1
2 2

p q p q
V A V Au gh u gh 

 

   
         
   
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7.1 Linear Momentum Equation for Finite Control Volumes

II =

 
2

2 2 1

2

0
2

p q
V A Vu gh 



 
    
 

1
A dh

2

2CV

q
e dV u gh

t t


 
  

  CV
dV

 
 
 



∵ nearly constant in the tank

except near the nozzle

 1
0

h

A dhu gh
t




 
 

 
2

2 2 1
0

2

0
2

hp q
V A A dhu gh u gh

t
 



  
      

 

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7.1 Linear Momentum Equation for Finite Control Volumes

Assume 2 2
const. , 0 , 0 (datum)

atm
p p h    

2

2
2 2 2 2 1 1

0
2

V dh dh
uV A V A uA A gh

dt dt
    (B)

Substitute (A) into (B)

2 2
0 uV A  

2

2
2 2 2 2

2

V
V A u V A    2 2

gh V A 

2

2
2 2 2 2

2

V
V A ghV A 

2
2V gh (C)

1 2 2

dh
A V A

dt
 
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7.1 Linear Momentum Equation for Finite Control Volumes

Substitute (C) into (A)

2 1
2

dh
A gh A

dt
 

2

1

2
dh A

gdt
Ah

 

Integrate 

0 0 0

1
12 2
2

0
1

2
2

hh t h

h h h

dh A
gdt h dh

hAh

 
     

 
  

2
1

22
0

1

2

2

gA
h h t

A

 
  
 
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7.1 Linear Momentum Equation for Finite Control Volumes

 
2

20.1 32.2
16

20 2
h t

 
  
 

 
2

4 0.0201t 

 
2

At 50sec , 8.984 0.0201 50t h ft   

  
2

2 2 24.05 fps32.2 8.98V gh  

   
2 2

24.05 0.1 2.405 cfsQ VA  
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iii) Momentum equation, Eq. (7.4)

II = Time rate of change of momentum inside CV is negligible 

if tank area is large compared to the nozzle area 

7.1 Linear Momentum Equation for Finite Control Volumes

p sF F bF  
CS CV

q q dVq dA
t

 


 
 

I II

 1A  2 .A

  2 1n n n n
CS

q q q dA q q dAq dA      2 2 2V V A

2 2 2 2 2pxF V V A V Q   

   24.05 1.94 2.405 112 lb
px

F  

I = 
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→ The vector sum of all the external 

moments acting on a fluid mass        

equals the time rate of change of the 

moment of momentum (angular 

momentum) vector               of the fluid 

mass.

Example:  rotary lawn sprinklers, ceiling 

fans, wind turbines

7.2 The Moment of Momentum Equation for Finite Control Volumes

 r F

 r M

7.2.1 The Moment of momentum principle for inertial reference systems

Apply Newton's 2nd law to rotating fluid masses
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7.2 The Moment of Momentum Equation for Finite Control Volumes
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where  

= torque

= position vector of a mass in an arbitrary curvilinear motion

= linear momentum

7.2 The Moment of Momentum Equation for Finite Control Volumes

 d
T r F r M

dt
    (7.10)

r

M

T
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[Re] Derivation of (7.10)

Take the vector cross product of 

By the way, 

7.2 The Moment of Momentum Equation for Finite Control Volumes

Eq. (7.1): 
dM

F
dt



r

dM
r F r

dt
  

I

 d dr dM
r M M r

dt dt dt
    
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where              = angular momentum (moment of momentum)

7.2 The Moment of Momentum Equation for Finite Control Volumes

0
dr dr

I M q m q q
dt dt

 
      

 

 sin0 0q q q q   

 ddM
r Mr

dtdt

 
   

 

 d
r F r M

dt
   

r M
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[Re] Torque

• translational motion  →  

Force – linear acceleration

• rotational motion    →  

Torque – angular acceleration 

[Re] Vector Product

Magnitude  =                                  = area of parallelogram

direction  =  perpendicular to plane of     and → right-handed triple

7.2 The Moment of Momentum Equation for Finite Control Volumes

T r F 

V a b 

sinaV b  

a b
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• External moments arise from external forces

where                   = external torque

7.2 The Moment of Momentum Equation for Finite Control Volumes

 b a a b   

   ka b k a b  

     a b c a b a b     

b
Ts

Tp
T

       p s b

d
r F r F r F r M

dt
      

 p s b

d
T T T r M

dt
    (7.11)

, ,
p s b

T T T
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7.2 The Moment of Momentum Equation for Finite Control Volumes

7.2.2 The general moment of momentum equation 

(7.12)

 
CS CV

dM
q q dVq dA

dt t
 


 

 

       
CS CV

d
r M dVr q r qq dA

dt t
 


    

 

     
CS CV

T T T dVr q r qq dA
p s b t

 


    
 

angle between and
yz yz

q r

   . : sin cos
2

yz yzyz yz
r qx dir r q rq




    
 

(7.3):
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7.2 The Moment of Momentum Equation for Finite Control Volumes

     . : cos cospy sy by zx zxCS CV
y dir T T T dVrq rqq dA

t
  


    

 

     . : cos cospz sz bz xy xyCS CV
z dir T T T dVrq rqq dA

t
  


    

 

(7.13)

     . : cos cospx sx bx yz yzCS CV
x dir T T T dVrq rqq dA

t
  


    

 

fig_05_05
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7-2. Derive the expression for the total force per unit width exerted by the 

sluice gate on the fluid in terms of vertical distances shown in Fig. 4-20. 

Homework Assignment # 3

Due: 1 week from today

7-1. Derive the equation for the volume rate of flow per unit width for the 

sluice gate shown in Fig. 4-20 in terms of the geometric variable b, y1, and 

CC. Assume the pressure in hydrostatic at y1 and  ccb and the velocity is 

constant over the depth at each of these sections. 

Problems

x
F
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7-3. Consider the flow of an incompressible fluid through the Venturi

meter shown in Fig. 4-22. Assuming uniform flow at sections (1) and (2) 

neglecting all losses, find the pressure difference between these sections 

as a function of the flow rate  Q, the diameters of the sections, and the 

density of the fluid,   .  Note that for a given configuration,  Q is a 

function of only the pressure drop and fluid density. 

Problems
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7-4. Water flows into a tank from a supply line and out of the tank through 

a horizontal  pipe as shown in Fig. 4-23. The rates of inflow and outflow 

are the same, and the water surface in the tank remains a distance h 

above the discharge pipe centerline. All velocities in the tank are 

negligible compared to those in the pipe. The head loss between the tank 

and the pipe exit is  HL (a) Find the discharge Q in terms of  h, A,       

and HL. (b) What is the horizontal force,  FX required to keep the tank 

from moving?  (c) If the supply line has an area A’,  what is the vertical 

force exerted on the water in the tank by the vertical jet?

Problems

x
F
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7-5. Derive the one-dimensional continuity equation for the unsteady, 

non-uniform flow of an incompressible liquid in a horizontal open channel 

as shown in Fig. 4-29. The channel has a rectangular cross section of a 

constant width, b. Both the depth, y0 and the mean velocity, V are 

functions of x and t.

Problems


