Lecture 15

Equations of Continuity and Motion (6/6)
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Lecture 15 Equations of Continuity and Motion (6)
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Contents
15.1 Vortex Motion

Problems

Objectives

- Derive 3D equations of continuity and motion

- Derive Navier-Stokes equation for Newtonian fluid
- Study solutions for simplified cases of laminar flow

- Derive Bernoulli equation for irrotational motion and frictionless flow

[ - Study solutions for vortex motions ]
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15.1 Vortex Motion

= \Vortex

- fluid motion in which streamlines are concentric circles

« Forced vortex N * \
T K

- Rotational cylinder ( 1\
/S \JJ

* Free vortex

- Typhoon, drain hole vortex \ /

(a) Forced vortex flow (b) Free vortex flow




15.1 Vortex Motion

= Vortex around the cylinder

Tip vortex structures

Free end

Shed Karman

vortices

Cylinder Wake

Kaérman vortex
formation

Boundary layer
separation on cylinder

Near-wake
region

Shear layer

Ground

plane
\ Horseshoe vortex
Ground plane boundary
z layer separation
‘y
y
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= Form drag vs skin drag
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15.1 Vortex Motion

15.1.71 Vortex

For steady flow of an incompressible fluid, apply Navier-Stokes equations

in cylindrical coordinates

Assumptions:
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15.1 Vortex Motion

g

Continuity Eq.: Eq. (11.10)

1.8 1 0 9,
10 o ~0
ror rae(V9)+azM
1 0 oV
r@H(V) _>59 ( )

Navier-Stokes Eq.: Eq. (11.9)

r-comp.

A
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15.1 Vortex Motion
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15.1 Vortex Motion

uol1a }
c 0= — rv
pér[rér( )) (15.2b)

3) z-comp.
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15.1 Vortex Motion

Integrate 6 -Eq. 15.2 b) w.r.t. r 0= 0 {1 0
or

%C1+C2:rv6, (A) ]
- need 2 BCs (15.3)

V,=—Lr+ 2 (B) .
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g

z-Eq.

®__ g=- 15.4
P y (15.4)
p=-yh (15.5)

— hydrostatic pressure distribution
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15.1 Vortex Motion

15. 1.2 Forced Vortex - rotational flow

Consider cylindrical container of radius /
R is rotated at a constant angular |

velocity (2 about a vertical axis
Substitute BCs into Eq. (15.3)

) r=0, v,=0
—>(A): 0+C,=0 .. C,=0

i) r=R, v,=RQ

L (B):RO=SR - C, =20
2
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15.1 Vortex Motion

Eqg. (B) becomes

20 . .
V, = - r =Qr | — solid-body rotation
(15.6)

2,2
r — Eq. Qr _ 1o

r p or
— P _ pQ°r (15.7) \/

or

z—-Eq.: a—p:—y (15.4) ;
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15.1 Vortex Motion

Consider total derivative ap

O O ~
dp = Ldr + Ldh = p0%rdr - ydh S
or oh
‘\\ Total he:ull/
Integrate once \/“z, /
2 r ’ \ l"rc::{u'f-u'c
p — m ? N 7/h + C3 f ho (;}I=.<-u11tst)

Incorporate B.C. to decide C,

I’=O, h:ho and p:pO

p,=0-yh,+C, .. C,=p,+yh,




14/33

15.1 Vortex Motion

2.2
Qr —-y(h—hy)| (15.8) -

P—Py=p

2

A
Total head/
/

/
/
/
/
/
/

At free surface

I'ree surface
(p = const)
0
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15.1 Vortex Motion
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» Rotation components in cylindrical coordinates

Eq. (10.15):

Z 2/ae+r or
1/rQQ o 1
= Q) =—(Q+Q)=Q
2( r-+8r( {) 2( " )

vorticity =2, =2Q #0

— rotational flow

— Forced vortex is generated by the transmission of tangential shear stresses.
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15.1 Vortex Motion
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15. 1.3 Irrotational or free vortex

Free vortex: drain hole vortex, tornado, hurricane, morning glory spillway
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15.1 Vortex Motion

For irrotational flow,

2

P +h+ \;i = Constant throughout the fluid field
/4
) Z coincides with h
Differentiate w.r t r (a—h = a—h =0, a—h = 1)
or 06 0z
lop 0O ov, 2
p y(—|— V —_— = O r =
y or ,ér or e T
0 oV
Loy,
or or
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15.1 Vortex Motion
I EEEEEEEE—————————————————————————

Eq (15.2a): r-Eq. of N-S Eq.

Fril (B)

Equate (A) and (B)

oy, N _ ﬁ B -
P or P or 6 (C)

Integrate using separation of variables

1 1
jgavg =J'—Far
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15.1 Vortex Motion
——————————————————————————————————————————————

Inv, =—Inr+C
Inv, +Inr=In(v,r)=C

v,r =C, ~ constant angular momentum (D)

vy ==t (15.10)

[Cf] Forced vortex

, = Qr (15.6)

(a) (b)




15.1 Vortex Motion

» Radial pressure gradient

20/33

- Total derivative op _
/ oh

-V

C2

dp = Par + Pah = p=4-dr -y

or oh
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15.1 Vortex Motion
g

Integrate once

C 2 !
p=—p 2_ —yh+C, (E) o g

‘ree surface for
irrotational vortex

B.C.. r=o0: h=h, and P=0,

Substitute B.C. into Eq. (E) Datum

po=-7h,+Cy C;=p,+rh,

p—p,=r(h,—h)-p—=5 (15.11)

Q°r*+y(h,—h) (15.8)

[Cf] Forced vortex: P — P, =
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15.1 Vortex Motion

* Locus of free surface is given when p = p,

h=h, >

~ — hyperboloid of revolution (15.12)

2
[Cf] Forced vortex: h = h, + Q_ r2 (15.9)
29

= Circulation

/7 ds=rdé

F=¢g-ds=| v,rdo=[C,0] =2zC, %0

v,r=C,




23/33

15.1 Vortex Motion
g

— Even though flow is irrotational, circulation for a contour enclosing the

origin is not zero because of the singularity point.

= Vorticity component w,

W, = C, + 0 (C“ j = C, _C_24 =0 — |rrotational motion




24/33

15.1 Vortex Motion
I EEEEEEEE—————————————————————————

At r= 0 of drain hole vortex, either fluid does not occupy the space or fluid

is rotational (forced vortex) when drain in the tank bottom is suddenly closed.

— Rankine combined vortex

— Fluid motion is ultimately dissipated through viscous action.

P = Patm
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15.1 Vortex Motion

« Stream function, v

ﬁ
oy C, I 2r
V, = = =
“or r 2ar

y = constant

= L jdr: L Inr=Klinr
27

v r 2z

where [" = vortex strength

¢ = constant




26/33

15.1 Vortex Motion
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15.1 Vortex Motion
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Problems
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Homework Assignment # 5
Due: 2 weeks from today

1. (6-4) Consider an incompressible two-dimensional flow of a viscous fluid

in the Xy-plane in which the body force is due to gravity. (a) Prove that the

divergence of the vorticity vector is zero. (This expresses the conservation

of vorticity, v./ =0.) (b) Show that the Navier- Stokes equation for this flow

can be written in terms of the vorticity as %—fzvvzi . (This is a “diffusion”

equation and indicates that vorticity is diffused into a fluid at a rate which

depends on the magnitude of the kinematic viscosity.) Note that d% s the

substantial derivative.

F-Vxa=ic+in+ks  e=Ti-T n-g-
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2. (6-5) Consider a steady, incompressible laminar flow between parallel

plates as shown in Fig. 6-4 for the following conditions: g=0.03 m,

U=0.3 m/sec, 1= 0.476 N-sec/m?, op/0ox=625 N/m?3 (pressure increases

in + x-direction). (a) Plot the velocity distribution, ¢(z),inthe ~Zz-

direction. Use Eq. (6.24) (b) In which direction is the net fluid motion? (c)

Plot the distribution of shear stress z,, in the z-direction.

U
—
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3. (6-7) An incompressible liquid of density p and viscosity x flows in a thin

film down glass plate inclined at an angle « to the horizontal. The

thickness, a, of the liquid film normal to the plate is constant, the velocity
is everywhere parallel to the plate, and the flow is steady. Neglect viscous
shear between the air and the moving liquid at the free surface. Determine

the variation in longitudinal velocity in the direction normal to the plate, the

shear stress at the plate, and the average velocity of flow.
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4. (6-11) Consider steady /aminar flow in the horizontal axial direction

through the annular space between two concentric circular tubes. The

radii of the inner and outer tube are r, and r,, respectively. Derive the

expression for the velocity distribution in the direction as a function of

viscosity, pressure gradient op/ox, and tube dimensions.
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5. (6-15) The velocity potential for a steady incompressible flow is given by @

=(—al 2)(x?+ 2y- z?), where ais an arbitrary constant greater than zero. (a)
Find the equation for the velocity vector G=iu+ jv+ kw
(b) Find the equation for the streamlines in the xz (y = 0) plane.

(c) Prove that the continuity equation is satisfied.

6. (6-21) The velocity variation across the radius of a rectangular bend (Fig.

6-22) may be approximated by a free vortex distribution v, r = const.

Derive an expression for the pressure difference between the inside and

outside of the bend as a function of the discharge Q, the fluid density p, and

the geometric parameters /R and b, assuming frictionless flow.
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Problems

R
| Sec. A-A  FIGURE 6-22




