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Lecture 15

Equations of Continuity and Motion (6/6)
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Lecture 15 Equations of Continuity and Motion (6)

Contents

15.1 Vortex Motion

Problems

Objectives

- Derive 3D equations of continuity and motion

- Derive Navier-Stokes equation for Newtonian fluid

- Study solutions for simplified cases of laminar flow

- Derive Bernoulli equation for irrotational motion and frictionless flow

- Study solutions for vortex motions
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15.1 Vortex Motion

 Vortex

- fluid motion in which streamlines are concentric circles

• Forced vortex

- Rotational cylinder

• Free vortex

- Typhoon, drain hole vortex
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15.1 Vortex Motion

 Vortex around the cylinder  Form drag vs skin drag
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15.1 Vortex Motion

For steady flow of an incompressible fluid, apply Navier-Stokes equations 

in cylindrical coordinates

Assumptions:

0v 

h

 
0

t






0; 0; 0r z

v
v v

z


  



0
p








p p

z h

 


 
(    =vertical direction)

15.1.1 Vortex



6/33

1)  r -comp.  

15.1 Vortex Motion

Continuity Eq.:  Eq. (11.10)
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(15.1)

Navier-Stokes Eq.:  Eq. (11.9)
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15.1 Vortex Motion
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3) z -comp.

15.1 Vortex Motion
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Integrate  -Eq. 15.2 b) w.r.t. r 

Integrate again 

15.1 Vortex Motion
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z -Eq.

→ hydrostatic pressure distribution 

15.1 Vortex Motion
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15.1.2 Forced Vortex - rotational flow 

Consider cylindrical container of radius 

R is rotated at a constant angular 

velocity W about a vertical axis

Substitute BCs into Eq. (15.3)

15.1 Vortex Motion

i) 

2 2

0, 0

( ) : 0 0 0

r v

A C C

 

    

1
1

,

( ) : 2
2

r R v R

C
B R R C

  W

 W    W

ii) 



12/33

15.1 Vortex Motion

Eq. (B) becomes
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Incorporate B.C. to decide C3

Consider total derivative dp

Integrate once

15.1 Vortex Motion
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15.1 Vortex Motion
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• Rotation components in cylindrical coordinates

→ rotational flow

→ Forced vortex is generated by the transmission of tangential shear stresses.

15.1 Vortex Motion

Eq. (10.15):

vorticity
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15.1 Vortex Motion

15.1.3 Irrotational or free vortex

Free vortex:  drain hole vortex, tornado, hurricane, morning glory spillway
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15.1 Vortex Motion

For irrotational flow,
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Eq (15.2a):  r -Eq. of N-S Eq.

Equate (A) and (B)

Integrate using separation of variables

15.1 Vortex Motion
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15.1 Vortex Motion

ln lnv r C   
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15.1 Vortex Motion

• Radial pressure gradient

(B):
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15.1 Vortex Motion

Integrate once
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15.1 Vortex Motion

• Locus of free surface is given when p = p0
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15.1 Vortex Motion

→ Even though flow is irrotational, circulation for a contour enclosing the 

origin is not zero because of the singularity point.

 Vorticity component z
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At r = 0 of drain hole vortex, either fluid does not occupy the space or fluid 

is rotational (forced vortex) when drain in the tank bottom is suddenly closed. 

→ Rankine combined vortex

→ Fluid motion is ultimately dissipated through viscous action.

15.1 Vortex Motion
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15.1 Vortex Motion

• Stream function, y
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15.1 Vortex Motion
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15.1 Vortex Motion
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1. (6-4) Consider an incompressible two-dimensional flow of a viscous fluid 

in the     -plane in which the body force is due to gravity. (a) Prove that the 

divergence of the vorticity vector is zero. (This expresses the conservation 

of vorticity,            . (b) Show that the Navier- Stokes equation for this flow 

can be written in terms of the vorticity as                   . (This is a “diffusion” 

equation and indicates that vorticity is diffused into a fluid at a rate which 

depends on the magnitude of the kinematic viscosity.)  Note that          is the 

substantial derivative.

Problems

Homework Assignment # 5

Due: 2 weeks from today
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2. (6-5) Consider a steady, incompressible laminar flow between parallel 

plates as shown in Fig. 6-4 for the following conditions:  a =0.03 m,       

U =0.3 m/sec,   0.476 N·sec/m2,            =625 N/m3 (pressure increases 

in + x -direction).  (a) Plot the velocity distribution, u(z), in the     z -

direction. Use Eq. (6.24) (b) In which direction is the net fluid motion? (c) 

Plot the distribution of shear stress tzx in the z -direction.

Problems

/p x 
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3. (6-7) An incompressible liquid of density  and viscosity  flows in a thin 

film down glass plate inclined at an angle a to the horizontal. The 

thickness, a , of the liquid film normal to the plate is constant, the velocity 

is everywhere parallel to the plate, and the flow is steady. Neglect viscous 

shear between the air and the moving liquid at the free surface. Determine 

the variation in longitudinal velocity in the direction normal to the plate, the 

shear stress at the plate, and the average velocity of flow.

Problems
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4. (6-11) Consider steady laminar flow in the horizontal axial direction 

through the annular space between two concentric circular tubes. The 

radii of the inner and outer tube are  r1 and r2, respectively. Derive the 

expression for the velocity distribution in the direction as a function of 

viscosity, pressure gradient             , and tube dimensions.

Problems

/p x 
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6. (6-21) The velocity variation across the radius of a rectangular bend (Fig. 

6-22) may be approximated by a free vortex distribution  r = const.

Derive an expression for the pressure difference between the inside and 

outside of the bend as a function of the discharge Q, the fluid density , and 

the geometric parameters R and b , assuming frictionless flow.

Problems

5. (6-15) The velocity potential for a steady incompressible flow is given by F 

 a / 2)(x 2 + 2y – z 2), where a is an arbitrary constant greater than zero.  (a) 

Find the equation for the velocity vector                         .  

(b) Find the equation for the streamlines in the xz (y = 0) plane. 

(c) Prove that the continuity equation is satisfied.

q iu jv kw  
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Problems


