Chapter 6 Equations of Continuity and Motion

Session 6-1 Continuity equation

Chapter 6 Equations of Continuity and Motion

Contents

6.1 Continuity Equation
6.2 Stream Function in 2-D, Incompressible Flows
6.3 Rotational and Irrotational Motion
6.4 Equations of Motion
6.5 Examples of Laminar Motion
6.6 Irrotational Motion
6.7 Frictionless Flow
6.8 Vortex Motion

Chapter 6 Equations of Continuity and Motion

Objectives

- Derive 3D equations of continuity and motion
- Derive Navier-Stokes equation for Newtonian fluid
- Study solutions for simplified cases of laminar flow
- Derive Bernoulli equation for irrotational motion and frictionless flow
- Study solutions for vortex motions

6.1 Continuity Equation

- Derivation of 3-D Eq.
conservation of mass \rightarrow continuity eq.
conservation of momentum \rightarrow eq. of motion \rightarrow Navier-Strokes eq.
Consider infinitesimal control volume $(\Delta x \Delta y \Delta z) \rightarrow$ point form
[Cf] Finite control volume - arbitrary CV \rightarrow integral form

Apply principle of conservation of matter to the CV
\rightarrow sum of net flux $=$ time rate change of mass inside C.V.

1) mass flux per unit time (mass flow)

$$
=\frac{\text { mass }}{\text { time }}=\rho \frac{\text { vol }}{\text { time }}=\rho Q=\rho u \Delta A
$$

6.1 Continuity Equation

6.1 Continuity Equation

- net flux through face perpendicular to x-axis
= flux in -flux out

$$
=\rho u \Delta y \Delta z-\left(\rho u+\frac{\partial(\rho u)}{\partial x} \Delta x\right) \Delta y \Delta z=-\frac{\partial(\rho u)}{\partial x} \Delta x \Delta y \Delta z
$$

- net flux through face perpendicular to y-axis

$$
=-\frac{\partial(\rho v)}{\partial y} \Delta x \Delta y \Delta z
$$

- net flux through face perpendicular to z-axis

$$
\begin{equation*}
=-\frac{\partial(\rho w)}{\partial z} \Delta x \Delta y \Delta z \tag{A}
\end{equation*}
$$

6.1 Continuity Equation

2) time rate change of mass inside C.V.

$$
\begin{equation*}
=\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z) \tag{B}
\end{equation*}
$$

Thus, equating (A) and (B) gives

$$
\begin{aligned}
& \frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z)=-\frac{\partial(\rho u)}{\partial x} \Delta x \Delta y \Delta z-\frac{\partial(\rho v)}{\partial y} \Delta x \Delta y \Delta z-\frac{\partial(\rho w)}{\partial z} \Delta x \Delta y \Delta z \\
& L H S=\frac{\partial}{\partial t}(\rho \Delta x \Delta y \Delta z)=\rho \frac{\partial}{\partial t}(\Delta x \Delta y \Delta z)+\Delta x \Delta y \Delta z \frac{\partial \rho}{\partial t}
\end{aligned}
$$

6.1 Continuity Equation

Since C.V. is fixed $\rightarrow \frac{\partial(\Delta x \Delta y \Delta z)}{\partial t}=0$
$\therefore \quad L H S=\Delta x \Delta y \Delta z \frac{\partial \rho}{\partial t}$
Cancelling terms makes

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0 \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot \rho \vec{q}=0 \tag{6.1}
\end{align*}
$$

\rightarrow Continuity Eq. for compressible fluid in unsteady flow (point form)

6.1 Continuity Equation

The $2^{\text {nd }}$ term of Eq. (6.1) can be expressed as

$$
\begin{gathered}
\nabla \cdot(\rho \vec{q})=\vec{q} \nabla \rho+\rho \nabla \cdot \vec{q} \\
\mathrm{I}
\end{gathered}
$$

(I): $\vec{q} \nabla \rho=(u \vec{i}+v \vec{j}+w \vec{k})\left(\frac{\partial \rho}{\partial x} \vec{i}+\frac{\partial \rho}{\partial y} \vec{j}+\frac{\partial \rho}{\partial z} \vec{k}\right)$
gradient
divergence

$$
\begin{equation*}
\text { (II): } \rho \nabla \cdot \vec{q}=\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \tag{i}
\end{equation*}
$$

$\therefore \nabla \cdot(\rho \vec{q})=u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)$

6.1 Continuity Equation

Substituting (i) into Eq (6.1) yields

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0 \\
& \frac{d \rho}{d t}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0 \tag{6.1}\\
& \frac{d \rho}{d t}+\rho(\nabla \cdot \vec{q})=0
\end{align*}
$$

6.1 Continuity Equation

[Re] Total derivative (total rate of density change)

$$
\begin{aligned}
& \frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial x} \frac{d x}{d t}+\frac{\partial \rho}{\partial y} \frac{d y}{d t}+\frac{\partial \rho}{\partial z} \frac{d z}{d t} \\
& =\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}
\end{aligned}
$$

1) For steady-state conditions

$$
\rightarrow \frac{\partial \rho}{\partial t}=0
$$

6.1 Continuity Equation

Then (6.1) becomes

$$
\begin{equation*}
\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=\nabla \cdot(\rho \vec{q})=0 \tag{6.3}
\end{equation*}
$$

2) For incompressible fluid (whether or not flow is steady)

$$
\begin{equation*}
\rightarrow \frac{d \rho}{d t}=0 \tag{6.4}
\end{equation*}
$$

Then (6.2) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=\nabla \cdot \vec{q}=0 \tag{6.5}
\end{equation*}
$$

6.1 Continuity Equation

[Re] Continuity equation in polar (cylindrical) coordinates

$$
\begin{aligned}
& u, r-\text { radial } \\
& v, \theta-\text { azimuthal } \\
& w, z-\text { axial }
\end{aligned}
$$

For compressible fluid of unsteady flow

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial(\rho u r)}{\partial r}+\frac{1}{r} \frac{\partial(\rho v)}{\partial \theta}+\frac{\partial(\rho w)}{\partial z}=0
$$

For incompressible fluid

$$
\frac{1}{r} \frac{\partial(u r)}{\partial r}+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}=0
$$

6.1 Continuity Equation

For incompressible fluid and flow of axial symmetry

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=0, \quad \frac{\partial \rho}{\partial r}=\frac{\partial \rho}{\partial \theta}=\frac{\partial \rho}{\partial z}=0, \quad \frac{\partial(\rho v)}{\partial \theta}=0 \\
& \therefore \frac{1}{r} \frac{\partial(u r)}{\partial r}+\frac{\partial w}{\partial z}=0 \quad \rightarrow \text { 2-D boundary layer flow }
\end{aligned}
$$

Example: submerged jet

6.2 Stream Function in 2-D, Incompressible Flows

- 2-D incompressible continuity eq. is

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{6.7}
\end{equation*}
$$

In 2D flowfield, define stream function $\psi(x, y)$ as

$$
\begin{align*}
& u=-\frac{\partial \psi}{\partial y} \tag{6.8}\\
& v=\frac{\partial \psi}{\partial x} \tag{6.9}
\end{align*}
$$

- We can have a simplified equation to determine only one unknown function.

6.2 Stream Function in 2-D, Incompressible Flows

Then LHS of Eq. (6.7) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{\partial}{\partial x}\left(-\frac{\partial \psi}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial \psi}{\partial x}\right)=-\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial x \partial y}=0 \tag{6.10}
\end{equation*}
$$

\rightarrow Thus, continuity equation is satisfied.

1) Apply stream function to the equation for a stream line in 2-D flow

$$
\begin{equation*}
\text { Eq. (2.10): } v d x-u d y=0 \tag{6.11}
\end{equation*}
$$

Substitute (6.8) into (6.11)

$$
\begin{equation*}
\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y=d \psi=0 \tag{6.12}
\end{equation*}
$$

6.2 Stream Function in 2-D, Incompressible Flows

$$
\begin{equation*}
\psi=\text { constant } \tag{6.13}
\end{equation*}
$$

\rightarrow The stream function is constant along a streamline.
2) Apply stream function to the law of conservation of mass

$$
\begin{equation*}
-q d n=-u d y+v d x \tag{6.14}
\end{equation*}
$$

Substitute (6.8) into (6.14)

$$
\begin{equation*}
-q d n=\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial x} d x=d \psi \tag{6.15}
\end{equation*}
$$

6.2 Stream Function in 2-D, Incompressible Flows

\rightarrow Change in $\psi(d \psi)$ between adjacent streamlines is equal to the volume rate of flow per unit width.

- Stream function in cylindrical coordinates

$$
v_{r}=-\frac{\partial \psi}{r \partial \theta} \quad \text { radial } \quad v_{\theta}=\frac{\partial \psi}{\partial r} \quad \text { azimuthal }
$$

6.3 Rotational and Irrotational Motion

6.3.1 Rotation and vorticity

Assume the rate of rotation of fluid element Δx and Δy about z-axis is positive when it rotates counterclockwise.

- time rate of rotation of Δx-face about z-axis

6.3 Rotational and Irrotational Motion

- time rate of rotation of Δy-face about z - axis

$$
=-\frac{1}{\Delta t} \frac{\left[u+\left(\frac{\partial u}{\partial y} \Delta y\right)-u\right] \Delta t}{\Delta y}=-\frac{\partial u}{\partial y}
$$

net rate of rotation $=$ average of rotations of Δx-and Δy-face

$$
\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

6.3 Rotational and Irrotational Motion

Doing the same way for x-axis, and y-axis

$$
\begin{align*}
& \omega_{x}=\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \\
& \omega_{y}=\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \tag{6.16a}
\end{align*}
$$

1) Rotation

$$
\begin{align*}
& \vec{\omega}=\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \vec{i}+\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \vec{j}+\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \vec{k} \\
& =\frac{1}{2}(\nabla \times \vec{q})=\frac{1}{2} \operatorname{curl} \vec{q} \tag{6.16b}
\end{align*}
$$

6.3 Rotational and Irrotational Motion

Magnitude:

$$
|\vec{\omega}|=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}}
$$

a) Ideal fluid \rightarrow irrotational flow

$$
\begin{align*}
& \nabla \times \vec{q}=0 \\
& \omega_{x}=\omega_{y}=\omega_{z}=0 \\
& \frac{\partial w}{\partial y}=\frac{\partial v}{\partial z}, \quad \frac{\partial u}{\partial z}=\frac{\partial w}{\partial x}, \quad \frac{\partial v}{\partial x}=\frac{\partial u}{\partial y} \tag{6.17}
\end{align*}
$$

b) Viscous fluid \rightarrow rotational flow

$$
\nabla \times \vec{q} \neq 0
$$

6.3 Rotational and Irrotational Motion

2) Vorticity

$$
\vec{\zeta}=\operatorname{curl} \vec{q}=\nabla \times \vec{q}=2 \vec{\omega}
$$

- Rotation in cylindrical coordinates

$$
\begin{aligned}
& \omega_{r}=\frac{1}{2}\left(\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}-\frac{\partial v_{\theta}}{\partial z}\right) \\
& \omega_{\theta}=\frac{1}{2}\left(\frac{\partial v_{r}}{\partial z}-\frac{\partial v_{z}}{\partial r}\right) \\
& \omega_{z}=\frac{1}{2}\left(-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}+\frac{v_{\theta}}{r}+\frac{\partial v_{\theta}}{\partial r}\right)
\end{aligned}
$$

6.3 Rotational and Irrotational Motion

6.3 Rotational and Irrotational Motion

6.3 Rotational and Irrotational Motion

6.3.2 Circulation

$\Gamma=$ line integral of the tangential velocity component about any closed contour S

$$
\begin{equation*}
\Gamma=\oint \vec{q} \cdot d \vec{s} \tag{6.19}
\end{equation*}
$$

6.3 Rotational and Irrotational Motion

- take line integral from A to B, C, D, A ~ infinitesimal CV

$$
\begin{align*}
& d \Gamma \cong\left[u-\frac{\partial u}{\partial y} \frac{d y}{2}\right] d x+\left[v+\frac{\partial v}{\partial x} \frac{d x}{2}\right] d y-\left[u+\frac{\partial u}{\partial y} \frac{d y}{2}\right] d x-\left[v-\frac{\partial v}{\partial x} \frac{d x}{2}\right] d y \\
& =\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \\
& d \Gamma \cong\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \\
& \Gamma=\iint_{A}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A=\iint_{A} 2 \omega_{z} d A=\iint_{A}(\nabla \times \vec{q})_{z} d A \tag{6.20}
\end{align*}
$$

6.3 Rotational and Irrotational Motion

For irrotational flow, circulation $\Gamma=0$ (if there is no singularity vorticity source).
[Re] Fluid motion and deformation of fluid element

Deformation $\left\{\begin{array}{l}\text { linear deformation } \\ \text { angular deformation }\end{array}\right.$

