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Boundary Layer Flows (2)
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Lecture 17 Boundary Layer Flows (2)

Contents

17.1 Equation for 2-D Boundary Layers

17.2 Laminar Boundary Layers

Objectives

- Derive the equation for 2-D boundary layers and integral equation

- Study the solution for laminar boundary layer flows
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• Prandtl (1904) suggested the boundary layer concept in which viscous 

effects are important only in the boundary layer regions, and outside 

boundary layer, the fluid acts as if it were inviscid.

A necessary condition for this structure of the flow is that the Reynolds 

number be large.

 Boundary Layer Theory

17.1 Equation for 2-D Boundary Layers 
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17.1.1  Boundary-layer thickness definitions  

- In the boundary layer, the fluid change its velocity from the upstream 

value of U to zero on the solid surface (no slip).

- The velocity profile is given as

17.1 Equation for 2-D Boundary Layers

( , )u u x y

- In actuality, there is no sharp edge to 

the boundary layer, that is, u → U.

→ very intermittent 

(17.1)
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(1) Boundary-layer thickness, d

- Define d as the distance to the point where the velocity is within 1% of the 

free-stream velocity, U

17.1 Equation for 2-D Boundary Layers

 @ 99  .  0u Uy dd   (17.2)
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(2) Mass displacement thickness, d* (d1)

~ is the thickness of an imaginary layer of fluid of velocity U.

~ is the thickness of mass flux rate (flowrate) equal to the amount of defect

17.1 Equation for 2-D Boundary Layers 

(17.3)
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[Re] mass flux = mass/time

1Q UA U   d *
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17.1 Equation for 2-D Boundary Layers 

(3) Momentum thickness, q (d2)

- Velocity retardation within d causes a reduction in the rate of momentum 

flux.

→ θ is the thickness of an imaginary layer of fluid of velocity U for which 

the momentum flux rate equals the reduction caused by the velocity profile.

2 2
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q   (17.4)
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[Re] momentum in θ =  

momentum in shaded area  = 

(4) Energy thickness, d3

17.1 Equation for 2-D Boundary Layers

2
mass velocity U U Uq q   

 ( )U u u dy  

d d q*
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17.1 Equation for 2-D Boundary Layers

17.1.2  Equation for 2-D boundary layers 

 Two-dimensional boundary layer equations by Prandtl

→ simplification of the N-S Eq. using order-of-magnitude arguments

- Start with 2D dimensionless N-S eq. for incompressible fluid with negligible 

gravitational effects 

L

L, V0 - constant reference values

0
V

0
V
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dimensionless boundary-layer thickness d

17.1 Equation for 2-D Boundary Layers

,u v x y
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∴ scale for decreasing order

Within thin and small curvature boundary layer
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17.1 Equation for 2-D Boundary Layers

Order of magnitude
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17.1 Equation for 2-D Boundary Layers 
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17.1 Equation for 2-D Boundary Layers 

2 2

2 2

1
:

Re

u u u p u u
x u v

t x y x x y

            
        

            

1/d d  2 2
(1 1/ )d d  

(17.6)

1        1x1 → 1

2 2

2 2

1
:

Re

v v v p v v
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Therefore, eliminate all terms of order less than unity in Eq. (17.6) and 

revert to dimensional terms

(17.7)

→ Prandtl's 2-D boundary-layer equation

(17.8)

Unknowns: u, v, p; Eqs. = 2 → needs assumptions for p

17.1 Equation for 2-D Boundary Layers 
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17.1.3 Integral momentum equation for 2-D boundary layers

- Prandtl’s equation can be integrated to obtain the relation between boundary 

shear stress and velocity distribution for steady motion of incompressible fluid.

Assumptions:

constant density:             

steady motion:              

pressure gradient = 0:          

BC's:  

17.1 Equation for 2-D Boundary Layers 
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17.1 Equation for 2-D Boundary Layers

- Prandtl's 2-D boundary-layer equations become as follows:

Integrate Eq. (A) w.r.t. y
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     (17.7)

(A)

(B)

(C)
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17.1 Equation for 2-D Boundary Layers 
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[Re] Integration by parts: 

(D)
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17.1 Equation for 2-D Boundary Layers 

Continuity Eq.:

→

Substitute (i) into ⑤

Substitute (ii) into ④
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17.1 Equation for 2-D Boundary Layers 

Eq. (D) becomes

(E)

Then, (C) becomes

For steady motion with and U = const., (F) becomes
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17.1 Equation for 2-D Boundary Layers 

where θ = momentum thickness     

(17.9)

Introduce surface (frictional) resistance coefficient  

(17.10)

Combine (17.9) with (17.10) 
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(17.11)
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17.1 Equation for 2-D Boundary Layers 

 Integral momentum equation for unsteady motion

→ unsteady motion:  

→ pressure gradient, 

First, simplify Eq. (17.7) for external flow where viscous influence is 

negligible.
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Substitute (A) into (17.7)

Integrate

17.1 Equation for 2-D Boundary Layers 

(B)
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17.1 Equation for 2-D Boundary Layers 
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③
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Combine ③-1 and ④

Substituting all these into (B) yields

→ Karman's integral momentum equation

17.1 Equation for 2-D Boundary Layers 

(17.12)
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17.2 Laminar Boundary Layers 

17.2.1  The Blasius solution for laminar flow

- Blasius (1908) solved the Prandtl’s boundary layer equations for steady 

laminar flow.

- Assume the pressure gradient           is zero.

- Then, Eq. (17.7) will reduce to
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(17.13a)

(17.13b)
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17.2 Laminar Boundary Layers 

- The boundary conditions are

At thewall

0 : 0, 0y u v  

Beyond theboundary layer

:y u U  

(17.14a)

(17.14b)

- Blasius obtained the solution by assuming similar velocity profiles along 

the plate at every x.

( )
u y

F F
U

(17.15)

where           is the same for all x, and                    . F
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( )xU f

- Introducing a stream function makes Eq. (17-13a) into the ordinary 

differential equation

17.2 Laminar Boundary Layers 

'/u y Uf

'1
/ /

2
v x U x f f

'' ''' 0ff f (17.17)

(17.16a)

(17.16b)

(17.16c)

- Blasius obtained the solution of Eq. (17.17) in the form of a power series 

expanded about          .0
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17.2 Laminar Boundary Layers 
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17.2 Laminar Boundary Layers 
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1/2
0.992when 5

/ Re
x

u y

U x
  

From the solution, it is found that 

17.2 Laminar Boundary Layers 
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Thus, we have the thickness of the boundary layer as

1/2
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Then, based on definition of the mass and momentum thicknesses, we have

(17.18)

(17.19)

(17.20)
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3.32
f
c

Re

The local wall shear stress is given by the value of the velocity gradient at 

the wall

17.2 Laminar Boundary Layers 

Thus, the local wall shear stress coefficient is given as
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(17.21)

(17.22)

(17.23)
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1/2

1.328
f

l

C
Re

Drag for one side of a plate of width b is computed to be

17.2 Laminar Boundary Layers 

Using the relation

2

0 1/20

1.328
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2Re

l

l

U
D b x dx bl (17.24)

2

2
f

D C U bl




We get the coefficient of surface resistance as

(17.25)

(17.26)


