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Lecture 22

Origin of Turbulence (5)
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Lecture 22 Origin of Turbulence (5)

Contents

22.1 Description of Turbulence Problems

22.2 Basic Turbulence Models

Objectives

- Learn fundamental concept of turbulence

- Study Reynolds decomposition

- Derive Reynolds equation from Navier-Stokes equation

- Study eddy viscosity model and mixing length model



3/22

- Turbulent flows must instantaneously satisfy conservation of mass and 

momentum.

- The incompressible continuity and Navier-Stokes equations can be 

solved for the instantaneous flow field. 

- However, to accurately simulate the turbulent field, the calculation must 

span from the largest geometric scales down to the Kolmogorov length 

scales, all of which affect the flow field.

22.1 Description of Turbulence Problems

22.1.1 Solutions for turbulence problems

1) DNS of Navier-Stokes equations
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22.1 Description of Turbulence Problems

 Large Eddy Simulation (LES) 

- reduce the computational cost by neglecting the small scale turbulences, 

via low pass filtering of the N-S equations 

LES DNS  
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22.1 Description of Turbulence Problems 

- However, using Reynolds equations, in order to close the turbulent 

problem, theoretical assumptions are needed for the calculation of 

turbulent flows (Schlichting, 1979).

- We need to have empirical hypotheses to establish a relationship 

between the Reynolds stresses produced by the mixing motion and the 

mean values of the velocity components.

- Reynolds equation can be solved to acquire the average 

characteristics of instantaneous turbulent motion.

2) Reynolds-Averaged Navier-Stokes (RANS) equations
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where                   = Reynolds stress tensor; 

- It physically corresponds to the transport of momentum due to the turbulent 

fluctuations.

22.1 Description of Turbulence Problems

(22.1)

(22.2)

→ no. of unknowns > no. of equations

- The gap (deficiency of equations) can be closed only with auxiliary models 

and estimates based on intuition and experience. → Turbulence models
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 Phynomenological concepts of turbulence

∼ based on a superficial resemblance between molecular motion and 

turbulent motion

∼ crucial assumptions at an early stage in the analysis

• Eddy viscosity model (Boussinesq, 1877)

∼ turbulence-generated viscosity is modeled using analogy with molecular 

viscosity 

' '
t

du
u v

dy
    

22.1.2 Method of analysis

22.1 Description of Turbulence Problems

(22.3)
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• Mixing length model (Prandtl, 1925)

∼ analogy with mean free path of molecules 

in the kinetic theory of gases

2
' '

du du
u v l

dy dy
    

22.1 Description of Turbulence Problems

(22.4)

- The mixing length is a distance that a 

fluid parcel will keep its original characteristics 

before dispersing them into the 

surrounding fluid. 

l



9/22

22.2 Basic Turbulence Models

For laminar flow; 

For turbulent flow, use analogy with laminar flow;

where    = apparent (virtual) eddy viscosity 

→ turbulent mixing coefficient

∼ not a property of the fluid

∼ depends on      ; 

22.2.1 Boussinesq's eddy viscosity model

l

du

dy
 

' '
t

du
u v

dy
    



u ∝u

(22.6)

(22.5)
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- Prandtl (1925) express momentum shear stresses in terms of mean velocity

- Originally proposed by Taylor (1915)

■ Assumptions 

1) Average distance traversed by a fluctuating fluid element before it acquired 

the velocity of new region is related to an average (absolute) magnitude of the 

fluctuating velocity. 

where               =  mixing length

22.2.2 Prandtl's mixing length theory

(22.7a)'
du

v l
dy

∝

( )l l y

22.2 Basic Turbulence Models
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2) Two orthogonal fluctuating velocities are proportional to each other. 

Substituting (22.7) into (22.3) leads to

Therefore, combining (22.3) and (22.8), dynamic eddy viscosity can be 

expressed as

' '
du

u v l
dy

∝ ∝

2
' '

du du
u v l

dy dy
    

2 du
l

dy
 

(22.7b)

(22.8)

(22.9)

→ Prandtl's formulation has a restricted usefulness because it is not 

possible to predict mixing length function for flows in general. 

22.2 Basic Turbulence Models
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[Re] Mixing-length theory (Schlichting, 1979)

Consider simplest case of parallel flow in which the velocity varies only 

from streamline to streamline.

→   

Shearing stress is given as

( )

0

u u y

v w




 

' ' '
xy t

u v    

22.2 Basic Turbulence Models
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1) Fluid particles move in lump both in longitudinal and in the transverse 

direction.

2) If a lump of fluid is displaced from a layer at  to a new layer, then, the 

difference in velocities is expressed as (use Taylor series and neglect 

high-order terms)

22.2 Basic Turbulence Models

1

1 1 1( ) ( ) ; ' 0

y y

du
u u y u y l l v

dy


 
      

 

where l = Prandtl's mixing length (mixture length)

(1)



14/22

For a lump of fluid which arrives at upper layer from the lower laminar 

3) These velocity differences caused by the transverse motion can be 

regarded as the turbulent velocity fluctuation at

1

2 1 1( ) ( ) ; ' 0

y y

du
u u y l u y l v

dy


 
      

 

1

1 2

1
( )'

2
y

du
u u lu

dy

 
      

 

22.2 Basic Turbulence Models

(2)

(3)
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4) Transverse component  is the same order of magnitude as

5) Fluid lumps which arrive at layer  with a positive value of v’ (upwards 

from lower layer) give rise mostly to a negative u’.

where 0 < c < 1

(4)

(5)

' '
du

v const u const l
dy

   

' ' 0u v 

' ' ' 'u v c u v 

22.2 Basic Turbulence Models



16/22

6) Combine Eqs. (3)~(5) 

Include constant into l (mixing length) 

Therefore, shear stress is given as

→ Prandtl's mixing-length hypothesis 

2
' '

du du
u v constant l

dy dy
  

2
' '

du du
u v l

dy dy
 

2
' '

du du
u v l

dy dy
    

(6)

(7)

22.2 Basic Turbulence Models
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- Von Karman (1930), a student of Prandtl, attempted to remove the 

mixing length 

- Relate the mixing length to velocity gradient using the similarity rule

- Turbulent fluctuations are similar at all point of the field of flow

- Velocity is characteristics of the turbulent fluctuating motion. 

- For 2-D mean flow in the x - direction, a necessary condition to secure 

compatibility between the similarity hypothesis and the vorticity 

transport equation is

22.2.3 Von Karman's similarity hypothesis

22.2 Basic Turbulence Models

l
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where     = empirical dimensionless constant

Substituting (A) into (22.8) gives

→ Von Karman's similarity rule

2

2

du

dy
l

d u

dy

2 2

/

/

du dy
l

d u dy


4
2

2 2 2

( / )

( / )

du dy

d u dy
 



(22.10)

22.2 Basic Turbulence Models

Theodore von Karman

(1881~1963)

(A)
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For wall turbulence (immediate neighborhood of the wall), 

where        = von Karman const ≈ 0.4

(2)
2

2 2 du
y

dy
 

 
  

 

*
1du u

dy y y



  
 

*u 






l y

22.2.4 Prandtl's velocity-distribution law

22.2 Basic Turbulence Models

(1)

= shear velocity 

Substitute (1) into (22.8) 

Arrange (2) in terms of 

(3)

u
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Integrate (3) w.r.t. y

→ Prandtl's velocity distribution law

Apply Prandtl's velocity distribution law to whole region

Subtract (4) from (5) to eliminate constant of integration

→ Prandtl's universal velocity-defect law

(4)

(5)

(6)

* ln
u

u y C


 

max
u u at y h 

*
max

ln
u

u h C


 

max

*

1
ln

u u h

u y




22.2 Basic Turbulence Models
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Problems

Homework Assignment # 6

Due: 1 week from today

22-1. The velocity data listed in Table were obtained at a point in a 

turbulent flow of sea water. 

1) Compute the energy of turbulence per unit volume.

2) Determine the mean velocity in the  x-direction,   , and verify that         .

3) Determine the magnitude of the three independent turbulent shear 

stresses in Eq. (21-11).

* Include units in your answer

u ' 0u 
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Problems

u '
u

'
v

'
w
time,

sec cm/s cm/s cm/s cm/s

0.0 89.92 -4.57 1.52 0.91

0.1 95.10 0.61 0.00 -0.30

0.2 103.02 8.53 -3.66 -2.13

0.3 99.67 5.18 -1.22 -0.61

0.4 92.05 -2.44 -0.61 0.30

0.5 87.78 -6.71 2.44 0.91

0.6 92.96 -1.52 0.91 -0.61

0.7 90.83 -3.66 1.83 0.61

0.8 96.01 1.52 0.61 0.91

0.9 93.57 -0.91 0.30 -0.61

1.0 98.45 3.96 -1.52 -1.22

u '
u '

v
'

w


