

Turbulent Boundary-Layer Flows (3)

Contents

- 25.1 Power Law Formulas for Smooth Walls
- 25.2 Laws for Rough Walls

Objectives

- Study wall turbulence
- Derive equations of velocity distribution and friction coefficient for both smooth and rough walls

25.1.1 Power-law formulas: Smooth walls

- Logarithmic equations for velocity profile and shear-stress coeff.
- ~ universal
- ~ applicable over almost entire range of Reynolds numbers
- Power-law equations
- ~ applicable over only limited range of Reynolds numbers
- ~ simpler
- ~ explicit relations for \overline{u}/U and C_f
- ~ <u>explicit relations for δ in terms of *Re* and distance *x*</u>

Assumptions of power-law formulas

The power laws stem from two facts that hold for turbulent boundary layers with negligible pressure gradients when $Re_{\delta} = \frac{U\delta}{5 \times 10^5}$

i) Except very near the wall, mean velocity is closely proportional to a root of the distance y from the wall.

$$\overline{u} \propto y^{\frac{1}{n}}$$
 (A)

ii) Shear stress coeff. c_f is inversely proportional to a root of Re_{δ}

$$c_f \propto \frac{1}{\operatorname{Re}_{\delta}^m}$$
, $\operatorname{Re}_{\delta} = \frac{U\delta}{v}$
 $c_f = \frac{A}{\left(\frac{U\delta}{v}\right)^m}$
(25.1)

where n, A = constants; m = fraction

[Cf] Eq. (25.1) is similar to equation for laminar boundary layer, $c_f = \frac{3.32}{\text{Re}_s}$

Derivation of power equation

(25.2)

Assume \overline{u} depends on *y* by the same relation, Eq. (25.2), replacing δ with *y*

$$\frac{\overline{u}}{u_*} = B\left(\frac{u_*y}{\nu}\right)^{\overline{2-m}}$$
(25.3)

Divide (25.3) by (25.2)

$$\frac{\overline{u}}{U} = \left(\frac{y}{\delta}\right)^{\frac{m}{2-m}}$$
(25.4)

This result indicates that <u>all profiles are similar</u> and can be represented by <u>a single dimensionless curve</u> like laminar boundary layer profile. However, turbulent profiles are not truly similar, so Eq. (25.4) will apply for <u>different Reynolds number ranges only if the constant *m* is varied</u>.

Boundary-layer measurements shows that

For 3,000 < Re_{$$\delta$$} < 70,000; $m = \frac{1}{4}$, $A = 0.0466$, $B = 8.74$
 $\frac{\overline{u}}{\overline{U}} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$
(25.5)
 $\frac{U}{u_*} = 8.74 \left(\frac{u_*\delta}{\nu}\right)^{\frac{1}{7}}$
(25.6)
 $\frac{\overline{u}}{u_*} = 8.74 \left(\frac{u_*y}{\nu}\right)^{\frac{1}{7}}$
(25.7)
 $c_f = \frac{0.0466}{Re_{\delta}^{\frac{1}{4}}}$
(25.8)

7/28

[Re] The Blasius solution for laminar boundary layer flows

For steady laminar flow over a flat plate <u>with zero pressure gradient</u>, Prandtl's (1904) 2-D boundary-layer equations become as follows:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}, \qquad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(25.9)

Blasius (1908) obtained the solution to above PDE by assuming <u>similar profiles</u> along the plate at every <u>x</u>

 $\delta \sim \frac{x}{\operatorname{Re}_{2}^{-1/2}}$

(25.11)

(25.10)

Blasius obtained the solution in the form of power series after he introduced a stream function for $\frac{y}{\delta}$

FIG. 10-4. Velocity profiles in a laminar boundary layer on a flat plate [2].

• Relation for δ

Adopt integral-momentum eq. for steady motion with $\frac{\partial p}{\partial x} = 0$

~ integration of Prandtl's 2-D boundary-layer equations

$$\frac{\tau_0}{\rho} = U^2 \frac{\partial \theta}{\partial x} = c_f \frac{U^2}{2} \leftarrow \tau_0 = \frac{\rho}{2} c_f U^2$$
(25.12)

where θ = momentum thickness

$$\theta = \int_{0}^{h} \frac{\overline{u}}{U} \left(1 - \frac{\overline{u}}{U} \right) dy$$
(A)

Substitute Eq. (25.5) into (A) and integrate

$$\theta = \int_{0}^{h} \left(\frac{y}{\delta}\right)^{\frac{1}{7}} \left\{ 1 - \left(\frac{y}{\delta}\right)^{\frac{1}{7}} \right\} dy$$

$$= \frac{7}{72} \delta \approx 0.1\delta$$
(25.13)

Substitute Eqs. (25.8) and (25.13) into (25.12) and integrate w.r.t. x

$$\delta = \frac{0.318x}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} = \frac{0.318x}{\operatorname{Re}_{x}^{\frac{1}{5}}} , \quad \operatorname{Re}_{x} < 10^{7}$$

$$c_{f} = \frac{0.059}{\operatorname{Re}_{x}^{\frac{1}{5}}} , \quad \operatorname{Re}_{x} < 10^{7}$$

$$(25.14)$$

Integrate (25.15) over whole length, /, to get average coefficient

$$C_{f} = \frac{0.074}{\operatorname{Re}_{l}^{\frac{1}{5}}}$$
, $\operatorname{Re}_{l} < 10^{7}$ (25.16)

[Re] Derivation of (25.14) and (25.15)

$$U^{2} \frac{\partial \theta}{\partial x} = c_{f} \frac{U^{2}}{2}$$
$$\frac{\partial \theta}{\partial x} = \frac{c_{f}}{2}$$

Substitute (25.13) and (25.8) into (B)

$$\frac{\partial}{\partial x} \left(\frac{7}{72}\delta\right) = \frac{1}{2} \left(0.0466 / \left(\operatorname{Re}_{\delta}\right)^{\frac{1}{4}}\right)$$
$$\frac{7}{72} \quad \frac{\partial\delta}{\partial x} = \frac{0.0233}{\operatorname{Re}_{\delta}^{-\frac{1}{4}}} = \frac{0.0233}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$
$$\frac{\partial\delta}{\partial x} = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$

(B)

Integrate once w.r.t. x

$$\delta = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}x + C$$

B.C.:
$$\delta \cong 0$$
 at $x = 0$

$$0 = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}} 0 + C \quad \longrightarrow \quad C = 0$$

$$\delta = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}} x$$

$$\delta^{\frac{5}{4}} = \frac{0.2397}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{4}}} x^{\frac{5}{4}}$$

$$\therefore \delta = \left\{ \frac{0.2397}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{4}}} x^{\frac{5}{4}} \right\}^{\frac{4}{5}} = \frac{(0.2397)^{\frac{4}{5}}}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} x$$
$$\therefore \delta = \frac{0.318}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} x = \frac{0.318}{\operatorname{Re}_{x}^{\frac{1}{5}}} x \to \operatorname{Eq.}(C)(25.14)$$

(25.17):
$$c_f = \frac{0.0466}{\operatorname{Re}_{\delta}^{\frac{1}{4}}} = \frac{0.0466}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$

(C)

Substitute (25.14) into (C)

 \rightarrow (25.15)

Integrate (25.15) over *l*

$$C_{f} = \frac{1}{l} \int_{0}^{l} \frac{0.062}{\operatorname{Re}_{x}^{\frac{1}{5}}} dx = \frac{0.062}{l} \int_{0}^{l} \frac{1}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} dx \frac{0.062}{l\left(\frac{U}{\nu}\right)^{\frac{1}{5}}} \int_{0}^{l} \frac{1}{x^{\frac{1}{5}}} dx = \underbrace{0.076}_{\operatorname{Re}_{l}^{\frac{1}{5}}}$$

25.2.1 Effects of roughness

- Effects of roughness
- Rough walls:
- Velocity distribution and resistance = f(Reynolds number, roughness)
 [Cf] Smooth walls:
- velocity distribution and resistance = *f*(Reynolds number)
- For natural roughness, k is random, and statistical quantity

- Measurement of roughness effects
 - a) experiments with sand grains cemented to smooth surfaces Nikuradse
 - b) evaluate roughness value \equiv height k_s
 - c) compare hydrodynamic behavior with other types and magnitude of roughness
- Effects of roughness
- $\mathbf{i)} \quad \frac{k_s}{\delta'} < 1$
- \sim roughness has negligible effect on the wall shear
- \rightarrow hydrodynamically smooth

 $\delta' = \frac{4\nu}{u_*}$ = laminar sublayer thickness

- ~ roughness effects appear
- ~ roughness disrupts the laminar sublayer
- ~ smooth-wall relations for velocity and C_f no longer hold
- \rightarrow hydrodynamically rough

iii)
$$\frac{k_s}{\delta'} > 15 ~25$$

 friction and velocity distribution <u>depend only on roughness</u> rather than Reynolds number

 \rightarrow <u>fully rough flow condition</u>

If *x* increases, then c_f decreases, and δ' increases.

Therefore, for a surface of uniform roughness, it is possible to be <u>hydrodynamically rough upstream</u>, and <u>hydrodynamically smooth</u> <u>downstream</u>.

(2) Rough-wall velocity profiles

Assume roughness height k accounts for magnitude, form, and

distribution of the roughness. Then

(25.18)

Make *f* in Eq. (25.18) be a <u>logarithmic function to overlap the velocity-</u> <u>defect law</u>, Eq. (24.14), which is applicable for both rough and smooth boundaries.

(24.14):
$$\frac{U-\overline{u}}{u_*} = 5.6 \log\left(\frac{y}{\delta}\right) + 2.5, \ \frac{y}{\delta} < 0.15$$

i) For rough walls, in the wall region

$$\frac{\overline{u}_{rough}}{u_{*}} = -5.6 \log\left(\frac{k}{y}\right) + C_{5}, \quad \frac{u_{*}y}{\nu} > 50 \sim 100, \quad \frac{y}{\delta} < 0.15$$
(25.19)

where C_5 = constant = f(size, shape, distribution of the roughness)

22/28

25.2 Laws for Rough Walls

 \rightarrow Roughness reduces the local mean velocity \overline{u} in the wall region

where C_5 and $C_6 \rightarrow$ Table 9-4 (D&H)

TABLE 12-4

VALUES OF CONSTANTS IN ROUGH-WALL EQUATIONS FOR THE WALL REGION

 $(y/\delta < 0.15; u_*k/\nu > 50$ to 100)

Roughness type	Source of data	$C_5,$ Eq. (12–43)	C ₆ , Eq. (12–44)	C ₈ , Eq. (12–46)
Uniform sand grains	Nikuradse [11] (pipes)	8.2	-3.3	7.55
Wire screens	Hama [12] (plates)	. 6.1	-1.2	6.1
Transverse bars	Moore [7] (plates)	4.9	0	5.25
Eq. (1 Eq. (1 Eq. (1	2-43): \bar{u}/u_{*} = 2-44): $\Delta \bar{u}/u_{*}$ 2-46): $1/\sqrt{c_{f}}$	$= -5.6 \log (k/k) = 5.6 \log (u_*) = 3.96 \log (\delta/k)$	$egin{aligned} & (y) + C_5, \ & (k/ u) + C_6, \ & (k) + C_8. \end{aligned}$	·

(Constants in this table were evaluated graphically from Fig. 12-12.)

(3) Surface-resistance formulas: rough walls

Combine Eqs. (25.19) and (24.14)

+

$$\begin{split} \frac{U-\overline{u}}{u_*} &= -5.6 \log\left(\frac{y}{\delta}\right) + 2.5 \ , \quad \frac{y}{\delta} < 0.15 \\ \frac{\overline{u}}{u_*} &= -5.6 \log\left(\frac{k}{y}\right) + C_5 \\ \rightarrow \quad \frac{U}{u_*} &= -5.6 \log\left(\frac{\delta}{k}\right) + C_7 \\ \therefore \frac{U}{u_*} &= \sqrt{\frac{2}{c_f}} = 5.6 \log\left(\frac{\delta}{k}\right) + C_7 \\ \frac{1}{\sqrt{c_f}} &= 3.96 \log\left(\frac{\delta}{k}\right) + C_8 \end{split}$$

(25.21)

(25.22)

[Ex 25.1] Rough wall velocity distribution and local skin friction coefficient
- Comparison of the boundary layers on a smooth plate and a plate
roughened by sand grains

• Given: $\tau_0 = 0.485 \ lb \ /ft^2$ on both plates $U = 10 \ ft \ /sec$ past the rough plate $k_s = 0.001 \ ft$

Water temp. = 58 °F on both plates

(a) Velocity reduction Δu due to roughness From Table 1-3 (D&H):

$$ho = 1.938 \ slug \ / \ ft^3$$
; $u = 1.25 \times 10^{-5} ft^2 \ / \ sec$

Eq. (24.16) $\therefore u_* = \sqrt{\frac{\tau_0}{\rho}} = \sqrt{\frac{0.485}{1.938}} = 0.5 ft / \sec$ $c_f = 2 \left(\frac{u_*}{U}\right)^2 = 2 \left(\frac{0.5}{10}\right)^2 = 0.005$ $\frac{u_*k_s}{\nu} = \frac{0.5(0.001)}{1.25 \times 10^{-5}} = 40$ Eq. (25.20): $\frac{\Delta u}{u} = 5.6 \log \left(\frac{u_* k_s}{u} \right) - 3.3$ $\therefore \Delta u = 0.5 \{ 5.6 \log 40 - 3.3 \} = 2.83 ft / sec$

(b) Velocity \overline{u} on each plate at y = 0.007 ft

i) For rough plate

Eq. (25.19):
$$\frac{\overline{u}}{u_*} = 5.6 \log \frac{y}{k} + 8.2$$

 $\therefore \overline{u} = 0.5(5.6 \log \frac{0.007}{0.001} + 8.2) = 6.47 \text{ ft / sec}$

ii) For smooth plate,

Eq. (24.11):
$$\frac{\overline{u}}{u_*} = 5.6 \log \frac{u_* y}{\nu} + 4.9$$

 $\frac{u_* y}{\nu} = \frac{0.5(0.007)}{1.25 \times 10^{-5}} = 280$
 $\therefore \overline{u} = 0.5\{5.6 \log(280) + 4.9\} = 9.3 ft / sec$

Check $\Delta \overline{u} = 9.3 - 6.47 = 2.83 \rightarrow$ same result as (a)

(c) Boundary layer thickness δ on the rough plate Eq. (25.22):

$$\frac{1}{\sqrt{c_f}} = 3.96 \log \frac{\delta}{k_s} + 7.55$$
$$\therefore \log \frac{\delta}{k_s} = \frac{1}{3.96} \left\{ \frac{1}{\sqrt{0.005}} - 7.55 \right\} = 1.66$$
$$\therefore \frac{\delta}{k_s} = 46 \quad \Rightarrow \delta = 0.046 ft = 0.52 in = 1.4 cm$$

