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Turbulent Boundary-Layer Flows (3)



2/28

Lecture 25 Turbulent Boundary-Layer Flows (3)

Contents

25.1 Power Law Formulas for Smooth Walls

25.2 Laws for Rough Walls

Objectives

- Study wall turbulence

- Derive equations of velocity distribution and friction coefficient for 

both smooth and rough walls



3/28

25.1 Power Law Fomulas for Smooth Walls

 Logarithmic equations for velocity profile and shear-stress coeff . 

~ universal

~ applicable over almost entire range of Reynolds numbers 

 Power-law equations

~ applicable over only limited range of Reynolds numbers 

~ simpler 

~ explicit relations for         and  

~ explicit relations for      in terms of Re and distance 

25.1.1 Power-law formulas: Smooth walls

/u U fc
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i) Except very near the wall, mean velocity is closely proportional to a 

root of the distance y from the wall.

ii) Shear stress coeff. cf is inversely proportional to a root of Re

where n, A = constants; m = fraction

(A)
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 Assumptions of power-law formulas 

The power laws stem from two facts that hold for turbulent boundary 

layers with negligible pressure gradients when 5
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25.1 Power Law Fomulas for Smooth Walls
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[Cf] Eq. (25.1) is similar to equation for laminar boundary layer,  

 Derivation of power equation

Combine Eqs. (24.16) and (25.1)

(24.16):  

(25.2)
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Assume    depends on y by the same relation, Eq. (25.2), replacing  with y

Divide (25.3) by (25.2)
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(25.4)
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This result indicates that all profiles are similar and can be represented by 

a single dimensionless curve like laminar boundary layer profile.

However, turbulent profiles are not truly similar, so Eq. (25.4) will apply for 

different Reynolds number ranges only if the constant m is varied. 

25.1 Power Law Fomulas for Smooth Walls
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Boundary-layer measurements shows that

For 3,000 <  Re < 70,000;    

(25.5)

(25.6)

(25.7)

(25.8)
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[Re] The Blasius solution for laminar boundary layer flows 

For steady laminar flow over a flat plate with zero pressure gradient, Prandtl's (1904) 

2-D boundary-layer equations become as follows:
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Blasius (1908) obtained the solution to above PDE by assuming similar profiles 

along the plate at every x

Blasius obtained the solution in the form of power series after he introduced a 

stream function for 
y

(25.9)

(25.11)

Blasius, H. (1883-1970):  Prandtl’s student

25.1 Power Law Fomulas for Smooth Walls
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25.1 Power Law Fomulas for Smooth Walls
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 Relation for 

Adopt integral-momentum eq. for steady motion with  

~ integration of Prandtl's 2-D boundary-layer equations

where θ = momentum thickness 

Substitute Eq. (25.5) into (A) and integrate 

(25.12)
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25.1 Power Law Fomulas for Smooth Walls
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Substitute Eqs. (25.8) and (25.13) into (25.12) and integrate w.r.t. x

Integrate (25.15) over whole length, l , to get average coefficient

(25.13)
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25.1 Power Law Fomulas for Smooth Walls
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[Re] Derivation of (25.14) and (25.15)

Substitute (25.13) and (25.8) into (B)
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Integrate once w.r.t. x

B.C.:           at x = 0

→ 
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→ Eq. (C)(25.14)
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25.1 Power Law Fomulas for Smooth Walls
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Substitute (25.14) into (C)

Integrate (25.15) over  

→ (25.15)
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 Effects of roughness

 Rough walls:  

- Velocity distribution and resistance = f (Reynolds number, roughness) 

[Cf] Smooth walls:  

- velocity distribution and resistance = f (Reynolds number)

▪ For natural roughness,  k is random, and statistical quantity 

→   k =  ks = uniform sand grain 

25.2 Laws for Rough Walls

25.2.1 Effects of roughness
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▪ Measurement of roughness effects

a) experiments with sand grains cemented to smooth surfaces - Nikuradse

b) evaluate roughness value ≡ height  ks

c) compare hydrodynamic behavior with other types and magnitude of 

roughness

▪ Effects of roughness

i)      

~ roughness has negligible effect on the wall shear 

→ hydrodynamically smooth

= laminar sublayer thickness
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25.2 Laws for Rough Walls
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ii)        

~ roughness effects appear

~ roughness disrupts the laminar sublayer

~ smooth-wall relations for velocity and  Cf no longer hold

→ hydrodynamically rough 

iii)       > 15 ~25

~ friction and velocity distribution depend only on roughness rather than 

Reynolds number 

→ fully rough flow condition
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25.2 Laws for Rough Walls
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▪ Critical roughness,  kcrit

If x increases, then  cf decreases, and ' increases.

Therefore, for a surface of uniform roughness, it is possible to be 

hydrodynamically rough upstream, and hydrodynamically smooth 

downstream. 
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(2) Rough-wall velocity profiles

Assume roughness height k accounts for magnitude, form, and 

distribution of the roughness. Then

*

u y
f

u k
(25.18)

25.2 Laws for Rough Walls
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Make f in Eq. (25.18) be a logarithmic function to overlap the velocity-

defect law, Eq. (24.14), which is applicable for both rough and smooth 

boundaries.

(24.14):    

i) For rough walls, in the wall region 

where C5 = constant = f (size, shape, distribution of the roughness)
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(25.19)

25.2 Laws for Rough Walls
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ii) For smooth walls, in the wall region

(24.11):   

where C2 = 4.9

Subtract Eq. (25.19) from Eq. (24.11)

→ Roughness reduces the local mean velocity   

in the wall region

where C5 and C6 → Table 9-4 (D&H)

(25.20)
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25.2 Laws for Rough Walls



24/28

(3) Surface-resistance formulas:  rough walls 

Combine Eqs. (25.19) and (24.14) 

(25.21)

(25.22)
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25.2 Laws for Rough Walls
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[Ex 25.1] Rough wall velocity distribution and local skin friction coefficient

- Comparison of the boundary layers on a smooth plate and a plate 

roughened by sand grains 

▪ Given:   t0  0.485 lb /ft2 on both plates

U = 10 ft /sec past the rough plate

ks = 0.001 ft

Water temp. = 58 F on both plates 

25.2 Laws for Rough Walls



26/28

(a) Velocity reduction         due to roughness

From Table 1-3 (D&H): 

;    

Eq. (24.16)
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25.2 Laws for Rough Walls
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ii) For smooth plate, 

Eq. (24.11):  

Check                                 → same result as (a)

(b) Velocity      on each plate at y =0.007 ft

i) For rough plate

Eq. (25.19):  
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25.2 Laws for Rough Walls



28/28

(c) Boundary layer thickness  on the rough plate

Eq. (25.22): 
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25.2 Laws for Rough Walls


