Fusion Reactor Technology I (459.760, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Contents

```
Week 1. 에너지와 지구환경 문제
Week 2-3. 토카막로의 기초
Week 4-6. 토카막로의 설계
Week 8-9. 노심 플라즈마에 관한 기반과 과제
Week 10-13. 노공학 기술에 관한 기반과 과제
Week 14. 상용로의 길 / Project Presentation
```

Ch. 2 토카막로의 기초

• Tritium

삼중수소 한수원 자료 참고

- The name is formed from the Greek word "tritos" meaning "third".
- Total steady state atmospheric and oceanic quantity produced by cosmic radiation \sim 50 kg $_{\rm Tritum (TU) 260.9^{\circ} (ko/m^2)}$

http://lhs2.lps.org/staff/sputnam/chem_notes/Unitll_Radioactivity.htm http://www-pord.ucsd.edu/whp_atlas/pacific/maps/tritum/pac2600_tritium_final.jpg

• Tritium production by heavy water reactors (HWR)

- Extracted from the coolant and moderator of HWR $n+_1^2H\rightarrow_1^3H$
- Tritium could also be produced by placing lithium into control and shim rods of fission reactors.

Ch. 2 토카막로의 기초

Tritium

$$^{3}_{1}T \rightarrow ^{3}_{2}He^{1+} + e^{-} + \overline{V}_{e}$$

$$n \rightarrow p^{+} + Neutrino ("First postulpreserve conditions of the serve conditi$$

$$n \rightarrow p^+ + e^- + \overline{v}_e$$

no ("little neutral one" in Italian by Fermi): ostulated in 1930 by Wolfgang Pauli to ve conservation laws in beta decay

http://en.wikipedia.org/wiki/Neutrino

Ch. 2 토카막로의 기초

• Tritium

- Half life of 12.32 years with decay rate of $1.78 \times 10^{-9} \, \text{s}^{\text{-1}}$
- Releasing 18.6 keV of energy with 5.7 keV of an average kinetic energy of electrons
- Nuclear activity (decay rate of 1 kg of tritium)

$$Act = \left|\frac{dn_t}{dt}\right| = \lambda_t n_t = \frac{\lambda_t M_t}{m_t} = \frac{1.78 \times 10^{-9} \, s^{-1} \times 1kg}{5 \times 10^{-27} \, kg}$$

$$= 3.56 \times 10^{17} Bq$$

= $\frac{3.56 \times 10^{17}}{3.7 \times 10^{10}} Ci$
≈ $10^7 Ci$

1 Bq (becquerel): unit of radioacitivity (SI unit). activity of a quantity of radioactive material in which one nucleus decays per second
1 Ci (curie): 3.7x10¹⁰ decays per second (Bq) ~ activity of 1 g of the radium isotope ²²⁶Ra studied by the Curies

Tritium Export

• Total tritium to be received:

~ 29 kg due to tritium decay

- Decay rate: 5.47 %/year (Half life: 12.3 year)
- ITER Tritium Plant will be ready by 2016.
- Tritium available worldwide: ~ 20 kg (2006, Canada OPG) (+ Korea WTRF)
- ITER Tritium credit: \$30M/kg
- Market value: \$100M-\$200M/kg (~1억/g)
- Only one supplier for ITER written on the ITER documents now: Canada
- Canada OPG sells \sim 0.1 kg/year for other purposes.
- There is no other kg's order civilian tritium source at all.
- WTRF can produce more than 0.7 kg/year from year 2006.
- We have Tritium and good reason to supply.
- Korea is a partner for ITER, Canada is not.
- Korea is to procure the Tritium Storage and Delivery System for ITER.

C. S. Kim, "Tritium Export Preparation for ITER Operation and Fusion Applications", May 25, 2006, NFRI

Mechanisms of tritium transport

- 1) Intragranular diffusion
- 2) Grain boundary diffusion
- 3) Surface adsorption/ desorption
- 4) Pore diffusion
- 5) Purge flow convection

Purge gas composition: He + 0.1% H₂ Tritium release composition: T₂, HT, T₂O, HTO

$$\frac{dN_{t,c}}{dt} = F_{+t,c} - F_{-t,c} - R_{dt} = f_t F_{+t,c} - R_{dt} = 0 \quad \text{Steady state} \quad F_{+t}$$

Tritium decay neglected due to shorter time scale f_t : r

JN

*f*_t: respective burn fraction of tritium

$$\frac{dN_{t,b}}{dt} = F_{+t,b} - F_{-t,b} - \lambda_t N_{t,b} - \mathcal{E}_b N_{t,b}$$

$$= C_t R_{dt} - \frac{N_{t,b}}{\tau_{t,b}} - \lambda_t N_{t,b} - \mathcal{E}_b N_{t,b} \quad \longleftarrow \quad \frac{1}{\tau_b} = \frac{1}{\tau_{t,b}} + \lambda_t + \mathcal{E}_b$$

$$= C_t R_{dt} - \frac{N_{t,b}}{\tau_b}$$

$$N_{t,b}(0) = 0$$

$$N_{t,b} = Ae^{-\frac{t}{\tau_b}} + B = C_t R_{dt} \tau_b \left(1 - e^{-\frac{t}{\tau_b}}\right)$$

$$\frac{P_{et} C_t \tau_{t,b}}{P_{et} C_t \tau_{t,b}} = \frac{1}{T_{t,b}} + B = C_t R_{dt} \tau_b \left(1 - e^{-\frac{t}{\tau_b}}\right)$$

$$\frac{dN_{t,x}}{dt} = F_{+t,x} - F_{-t,x} - \lambda_t N_{t,x} - \varepsilon_x N_{t,x}
= \frac{N_{t,b}}{\tau_{t,b}} - \frac{R_{dt}}{f_t} - \lambda_t N_{t,x} - \varepsilon_x N_{t,x}
= \frac{C_t R_{dt} \tau_b}{\tau_{t,b}} \left(1 - e^{-\frac{t}{\tau_b}} \right) - \frac{R_{dt}}{f_t} - (\lambda_t + \varepsilon_x) N_{t,x}
= A_0 - A_1 e^{-\frac{t}{\tau_b}} - A_2 N_{t,x}$$

$$F_{-t,x} = F_{+t,c} = \frac{1}{f_t} \\
N_{t,b} = C_t R_{dt} \tau_b \left(1 - e^{-\frac{t}{\tau_b}} \right) \\
N_{t,x} = R_{t,c} = \frac{1}{T_{t,c}} \left(1 - e^{-\frac{t}{\tau_b}} \right) + \frac{1}{T_{t,c}} \left(1 -$$

$$A_0 = R_{dt} \left[C_t \left(\frac{\tau_b}{\tau_{t,b}} \right) - \frac{1}{f_t} \right], \quad A_1 = R_{dt} C_t \left(\frac{\tau_b}{\tau_{t,b}} \right), \quad A_2 = \lambda_t + \varepsilon_x$$

 R_{dt}

 $\boldsymbol{\Gamma}$

 $\boldsymbol{\Gamma}$

1. 중성자와 물질과의 상호작용

- 중성자는 물질을 구성하는 원자의 궤도전자에 Coulomb force를 미치지 않기 때문에 원자, 분자를 직접 전리시키지 못함.
- 주요 상호작용
 - 탄성산란
 - 비탄성산란
 - 중성자 포획
 - 하전입자의 방출 (핵변환)
 - 핵분열 반응

HW. 중성자와 plasma ion 간 scattering 효과는 무시할만한가? 왜?

1) 탄성산란

- 중성자가 원자핵과 탄성충돌하여 원자핵은 운동에너지를 가지고 recoil 되고,
 중성자는 그 만큼 운동에너지를 잃고 산란되는 현상 (n,n)
- 중성자의 에너지 < 원자핵의 여기에너지 (~1 MeV)
- Maximum of energy transferred to the atom by head-on collision (반발원자핵의 에너지)

$$(\Delta E)_{\max} = \frac{1}{2}m_1v_1^2 \frac{4m_1m_2}{(m_1 + m_2)^2} = \frac{4A}{(A+1)^2}E_{inc} \qquad A: 반발 원자핵의 질량수$$

 E_{inc} kinetic energy of the incident ion (neutron)

- 수소원자핵일 때 최대

- 중원소의 경우에는 무시할 수 있을 만큼 작음.
- 가벼운 원소의 물질은 투과하기가 어렵고, 무거운 원소의 물질은
 투과하기 쉬움.
- 반발원자핵은 궤도전자의 일부 또는 전부를 바꿀 정도로 고속으로 움직임.
 근처의 원자, 분자를 전리·여기 시킴 (반발핵에 의한 간접적인 전리·여기).

2) 비탄성산란

- 중성자가 원자핵과 충돌하면서 원자핵에 반발에너지를 줌과 동시에 핵을 여기시키는 현상 (n,n')
- 중성자에 의해 여기된 원자핵은 곧 γ선을 방출하고 기저상태로 돌아감.
- 방출된 γ선이 주위의 원자, 분자를 전리·여기 시킴 (간접적인 전리·여기).
- 중성자의 에너지가 높을 수록 일어나기 쉬움 (>핵의 여기에너지).
 수 MeV가 되면 탄성산란과 같은 비율로 일어남.
 핵의 여기에너지 보다 작아지면 일어나지 않음.

결국 중성자는 열중성자로 변하여 원자핵에 포획·흡수되거나 혹은 베타붕괴를 통해 붕괴함 (반감기 ~ 14.8분). $n \rightarrow p^+ + e^- + \overline{\nu_e}$

- cf) 고속중성자 (500 keV ~ 10 MeV). 저속중성자 (1 eV ~ 500 keV) • 공명포획: 특정한 원자핵이 특정한 에너지의 중성자에 대하여 높은 포획단면적을 나타내는 현상. 핵종에 따라 고유값을 가짐.
- · 중성자의 에너지가 낮을 수록 일어나기 쉬움. 1 eV 이하에서 포획단면적은 1/v에 비례하여 증가 열중성자에서 쉽게 발생
- ex) ⁵⁹Co(n,γ)⁶⁰Co • 중성자의 에너지가 낮을 수록 일어나기 쉬움.
- 되어 에너지를 γ선(포획 γ선)의 형태로 방출하고 안정화됨 (n,γ). • 중성자를 포획한 원자핵은 질량수가 1만큼 많은 동위원소가 됨. 방사성인 경우가 많음.
- 중성자의 속도가 느려지면 (< 1 keV) 원자핵에 충돌하여도 산란이 일어나지 않고 그대로 원자핵에 포획되어 흡수됨. 포획 직후 원자핵은 여기상태가 되어 에너지를 γ선(포획 γ선)의 형태로 방출하고 안정화됨 (n,y).

4) 하전입자의 방출 (핵변환)

- 고에너지의 중성자가 원자핵에 충돌하여 복합핵을 형성하고, 형성된
 여기상태의 복합핵이 양성자와 알파입자 등과 같은 하전입자를 방출하고
 다른 원소로 변환되는 반응.
- 방출된 하전입자는 주위의 원자, 분자를 전리·여기시킴 (간접적인 전리·여기).
- 핵반응의 단면적은 산란단면적에 비해 압도적으로 작음.
- 중성자의 에너지가 어느 threshold 이상일 경우 발생 (> 수 MeV).
 에너지가 높을 수록 여기 상태의 복합핵의 여기에너지가 높아지기 때문에 하전입자의 운동에너지의 형태로 방출함.
 Cf. ¹⁴N(n,p)¹⁴C는 저속 중성자에 의해 발생.
 ¹⁰B(n,α)⁷Li은 열중성자에 의해 발생.

5) 핵분열 반응

- 큰 원자(보통 우라늄, 플루토늄)의 원자핵이 두 개 이상의 다른 원자핵으로
 쪼개지는 현상
- 핵분열의 결과로 보통 2, 3개의 중성자가 다시 생겨남. 연쇄 반응
- 1938년 독일의 오토 한과 프리츠 스트라우스만이 우라늄에 중성자를 조사
 시키면 바륨의 동위 원소가 생성된다는 것을 처음으로 입증

2. 물질에 대한 조사손상

- 물질에 대한 조사 손상의 영향은 다음과 같이 분류되어짐.
 - Impurity production
 - Atomic displacement
 - Ionization

1) Impurity Production

- 방사성 핵으로 변환되는 것은 중성자에 의한 중성자 포획, 하전입자 방출, 핵분열 등을 통해 발생.
- 중성자가 입사한 경우, (n,α) 및 (n,p) 반응 등을 통해 양성자 및 알파입자가 생성되고, 재료 내에서 중성화되어 양성자는 수소로, 알파입자는 헬륨이 됨.
 실내온도에서는 이들이 기체로 존재하므로, 근접한 원자에게 압력을 가하여 고체에서는 이 내부압력에 물질의 swelling을 유발.
- 방사선 조사에 의해 생겨난 불순물은 결정체에 전기적, 기계적 성질을 바꿀 수 있는 구조결함을 야기함.
- 중성자 포획을 통해 발생한 방사성 핵종(동위원소)은 decay scheme 에 따 라 붕괴하면서 화학 원소를 변화시킴. 붕괴 진행과정에서 방출되는 방사선 은 물질에 흡수되어 방출에너지에 따라 물질과의 상호작용을 반복함.
- 이온이 조사된 경우, 핵의 이온 흡수는 즉시 화학 원소를 바꾸어 핵변환이 일어남.

2) Atomic Displacement

- 원자의 정상적인 위치에서 원자의 위치 이동. 즉, 위치를 이동한 원자는 빈
 격자 공간을 남기고, interstitial 위치에 머물거나 혹은 격자구조에서 다른 원자
 와의 내부교체가 발생. 양성자, 중성자, 150 keV 이상의 전자에 의해 주로 발생
- Atomic displacement는 탄성충돌을 통해 또는 방사선에 의해 유기된 여기 (excitation)를 원자 운동, 즉 되튀김 운동으로 변환함에 의해 발생. (하전입자가 물질을 통과 시, 하전입자에너지는 궤도전자의 여기 및 물질들의 nuclei와의 탄성충돌에 소비됨.)
- 탄성충돌에 의해 튕겨난 원자는 primary knock-on. Interstitial, vacancy와 함께 Frenkel pair 구성. 이차 displacement를 야기하기도 함.
- 결함(vacancy, interstitial, Frenkel pairs, dislocation 등)은 이차입자의 비적을 따라 발생.
 - 비전리에너지손실(no-ionizing energy loss: NIEL)을 사용하여 정량화. NIEL, MeV/m, MeV·m²/kg: 단위 길이당 비전리 events에 의해 손실된 에너지 (displacement damage는 충돌에 의한 에너지 손실에 비례)

Incident

Particle

Interstitial

Frenkel pair 🔵 Vacancy

2) Atomic Displacement

Vacancy 결함

Interstitial 결함

Substitutional atom

Frenkel 결함

Schottky 결함 (공공과 침입형 원자의 쌍) (양이온 공공과 음이온 공공의 쌍)

2) Atomic Displacement

Edge and Screw Dislocation (전위)

Stress states around an edge dislocation

http://en.wikipedia.org/wiki/Dislocation

3) Ionization

- 원자로부터의 전자제거와 하전입자의 이동경로에서 이온쌍을 형성하는 것
- 전리는 전자가 중성원자에 붙거나 제거되는 것.
- *α*, *β*, *p*은 물질을 직접적으로 전리시킬 수 있지만, *n*, *γ*는 간접적으로 일으킴.
- 전리에 의해 아래 순서로 분자형성에 대한 손상이 증가함.
 - Metallic bond (least damaged): 금속결합
 - Ionic bond: 이온결합
 - Covalent bond (most damaged): 공유결합 ex) 생체조직
 - 작은 체적에서의 large energy release. Thermal heating: 방사차폐체에 중요
- 물과 유기물에서 흡수된 전리에너지의 대부분은 화학적 결합을 깸.
 금속의 경우에는 열로 나타나고 결과적으로 물질의 성질을 변화시킬 수 있음.
- 중성자는 metallic bond, ionic bond에 주로 손상을 가함.

Physical Phenomena in Radiation Effects

Simulation Hierarchy

 $D + Li \rightarrow n + Be$

PIE: Post Irradiation Examination RFQ: Radio Frequency Quadrupole

- \$700M
- Only small samples, a few square centimeters in size

		Li Target	Ion Source RFQ gy Beam
Typical Reactions	⁷ Li(d,2n) ⁷ Be	⁶ Li(d,n) ⁷ Be	⁶ Li(n,T)⁴He
Deuterons	40 MeV	2x125 mA	Beam footprint 5x20 cm ² 28

• IFMIF Target Area

Main Parameters of IFMIF Accelerator

Particle Type	D+		
Ion Injector	100 keV, 140 mA		
RFQ	175 MHz, 8 MeV, 125 mA		
DTL	175 MHz, 8-40 MeV, 125 mA		
Number of Accelerators	2 (parallel operation)		
Output Current	250 mA		
Beam spot on Target	20 cm (horizontal) x 5 cm (vertical)		
Output Energy	32, 36 or 40 MeV		
Duty Factor	Cw		
Availability	> 88%		
Maintainability	Hands on		
Design Lifetime	40 years		

Target Specification of IFMIF

• Lithium Target

Jet Thickness	0.025 m (for 40 MeV D+)	
Jet Width	0.26 m	
Jet Velocity	15 m/s (range 10-20)	
Inlet Temperature	250 °C	
Outlet Temperature	300 °C	

• Irradiation Volume (dpa in iron)

High Flux (> 20 dpa/fpy*)	0.5 L
Medium Flux (1.0 to 20 dpa/fpy)	6 L
Low Flux (0.1 to 1.0 dpa/fpy)	7.5 L
Very Low Flux (0.01 to 0.1 dpa/fpy)	> 100 L

* fpy = full power year

- To simulate neutron field in the blanket (and possibly in other components) of DEMO relevant devices using accelerator-based D+Li source based on the similarity of nuclear responses (e.g. displacement damage production, gas production) in the materials after irradiation
- To be criticized by the small testing volume (~500 cm³ for highest flux area) and the high energy tail of neutron spectrum
- To apply Small Specimen Testing Technique (typical dimensions ~ mm in thickness, ~ cm in length) to avoid excessive activation and overcome smallness of volume
- Nuclear data above 20 MeV have an important role to provide the level of proximity of the irradiation condition to the actual condition in DEMO.

IFMIF

Irradiation Parameter	DEMO	ITER	IFMIF HFTM	IFMIF MFTM
Total n-flux (n/cm ² s)	1.3·10 ¹⁵	4·10 ¹⁴	(4-10)·10 ¹⁴	(2-6)·10 ¹⁴
H production (appm/fpy)	1200	500	1000-1500	300-500
He production (appm/fpy)	300	120	250-600	70-120
Displacement damage production (dpa/fpy)	30	< 2	20-55	7-10
H per dpa (appm/fpy)	40	45	40-50	30-50
He per dpa (appm/fpy)	10	11	10-12	8-14

- MCNPX calculations in Fe-alloys based on extended nuclear data libraries & detailed geometry models
- HFTM: High Flux Test Module
- MFTM: Medium Flux Test Module

Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF, A. Möslang

Fusion Testing Requirements

	Required	ITER
Neutron wall load	> 1 MW/m ²	(0.57 MW/m ²)
Neutron fluence	> 6 MW•y/m ²	(0.1 MW·y/m ²)
Long pulse	> 1000 s	(400 s)
Testing area/volume	> 10 m ² /5 m ³	

- IFMIF only provides radiation damage effects
- For Blanket/PFC development, testing in Non-fusion facilities (Lab. Exp. + fission reactors + Accel. n) and Fusion facilities
- Small size, low-fusion power DT plasma-based device ("Component Test Facility") in which Fusion Nuclear Technology experiments can be performed in fusion environment.