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Current status and future issues of 
blanket development
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Specifications and characteristics

• Tritium production and release characteristics

- fuel self-supply

• Temperature control characteristics by 

the high-temperature coolant for electricity 

generation

- high temperature for high efficiency 

• Sufficient shielding characteristics

- VV, superconducting magnets, surrounding components, 

bio-shield

• Long term durability of the blanket structure

- withstanding high surface heat flux, neutron wall loads, 

strong EM loads, high irradiation fluence, many operation cycles,  

exposure to chemicals during operation



5

• High safety, reliability, and environmental 

susceptibility

- no triggering of an initiating event for accidents in 

an off-normal condition

- minimizing the potential hazards and radio-activation

• High economic factors

- high efficiency electricity generation

- reducing fabrication costs

- recycling used breeder material

- reducing the duration of remote handling blanket maintenance

(availability)

Specifications and characteristics
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• Selection of solid breeder type

- small thermo-chemical activity of elemental material

- Tritium inventory can be kept relatively low.

- Basic technology for tritium recovery is already established.

• Pebble bed utilisation for breeder and multiplier

layers

- Application of a pebble bed structure may reduce fracture 

by reducing the influence of the degradation of 

the thermo-mechanical properties.

• Pressurised water as the candidate coolant

- having sufficient experience

Blanket type and the development status
- Unique merit of solid blanket
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• RAFS as the candidate structural material

- superior characteristics for both irradiation and a wide range of

high-temperature usage in industry

• Possibility of performance upgrade

- upgrading to He gas coolant and innovative structural materials,

such as ODS, SiC/SiC composites

- Upgrades do not require major changes in the design.

Blanket type and the development status
- Unique merit of solid blanket



Blanket type and the development status
- Liquid blanket
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• Merits

- not having irradiation degradation in the breeder material

- less stringent high-temperature limit for the breeder material

• Potentials

- high heat removal

- Adequate tritium breeding ratio appears possible without 

beryllium neutron multiplier in Li, PbLi (Pb serves as a multiplier

in PbLi).  

Cf. Note that molten salts, e.g FLiBe has beryllium part of the salt 

and generally requires additional separate Be.

- Relatively simple design

- Low pressure, low pumping power 

(if MHD problems can be overcome)



Blanket type and the development status
- Liquid blanket
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• Issues

- LiPb: Po (polonium) generation by nuclear transmutation, 

Li-Pb fraction change in the course of breeding T from Li

• Molten salt blanket

- reducing the MHD pressure loss

- reducing the chemical reactivity compared to the liquid Li blanket



• Major blanket types under development

Blanket type and the development status
- Solid blanket
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• 증식재의 형태에 따라 고체 증식재와 액체 증식재로 나뉨.

고체증식재 액체증식재

Li2O, Li2TiO3, Li2ZrO3, Li2SiO4

액체 리튬, 액체금속, 
FLiBe (용융염: molten salt fluids)

화학적으로 안정
잠재적인 안정성 높음
구조재와의 양립성이 우수함

방사선 손상 경미
높은 TBR

중성자 조사에 의한 손상

화학적으로 활성 – 구조재 부식
액체리튬의 안정성 문제
MHD 압력 손실로 인한 유속 감소:   
전기절연막 필요

Blanket Concepts
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Li
Li17Pb83

(Lithium-lead eutectic)

FLiBe
(LiF∙BeF2)

(Molten salt fluids)

트리튬 회수 어려움: 
수소동위체의 용해도가 큼

트리튬 회수 쉬움: 
트리튬 용해도가 매우 작음

트리튬의 구조재료를 통한
투과누출이 작음: 
트리튬이 Li 중에 모임

투리튬의 투과누출이 큼: 
구조재로의 세라믹 코팅막
등의 투과장벽이 필요

FLiBe 중의 트리튬 화학형
TF나 T2에 의해 구조재의
부식 증가 또는 트리튬
추가누출 증대

화학적으로 안정하고
고온 사용이 가능

Tritium Breeding
• Liquid Breeder Concepts
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냉각재 장점 단점

물(경수)

- 전열특성이 좋음
- 비교적 저유속으로 큰 제열성능을 얻음. 
- 자장의 영향을 받지 않음.
- 펌프동력 양호
- 구조재와의 공존성 높아 차폐성능 양호
- 경수로 기술 적용 가능

- 중성자 흡수반응 단면적이 큼
(TBR 저하)

- 냉각수의 로내 및 증식영역으로의
누출에 의한 압력상승 대책 필요

He gas
- 화학적으로 불활성, 취급 용이
- 구조재와의 공존성 양호
- 고온 취급 가능으로 고발전효율 기대

- 열용량이나 열전달률이 비교적
작아 제열한계가 낮음.

- 펌프동력이 커짐.
- 차폐성능이 낮아 차폐체가 두꺼워짐.

액체
금속

- 전열특성이 양호
- 저압에서 고온운전 가능
- 냉각재와 증식재를 겸함으로 인해
블랭킷 구조의 간략화

- 반응생성물의 인출이나 성분조정 등을
연속해서 할 수 있음.

- 화학적으로 활성
- MHD 압력 손실이 큼
(전기절연피복 설치 또는 기액이층류로
전기전도율 내리는 방법 등 고려)

Power Extraction



Flows of electrically conducting coolants will 

experience complicated 

magnetohydrodynamic (MHD) effects

What is magnetohydrodynamics (MHD)?

– Motion of a conductor in a magnetic field produces an EMF that can 
induce current in the liquid. This must be added to Ohm’s law:

– Any induced current in the liquid results in an additional body force
in the liquid that usually opposes the motion.  This body force must 
be included in the Navier-Stokes equation of motion:

– For liquid metal coolant, this body force can have dramatic impact 
on the flow: e.g. enormous MHD drag, highly distorted velocity 
profiles, non-uniform flow distribution, modified or suppressed 
turbulent fluctuations
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What is turbulence?

 Reynolds number: Re=VL/        

= - +

V2/L             V/L2

 When Re << Recritical,  flow = laminar

When Re >> Recritical, flow = turbulent

(V2/L) / (V/L2) 



Main Issue for Flowing Liquid Metal in Blankets: 

MHD Pressure Drop

Feasibility issue – Lorentz force resulting from LM 

motion across the magnetic field generates MHD 

retarding force that is very high for electrically 

conducting ducts and complex 

geometry flow elements


c

ww
MHD

a

t
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p, pressure

L, flow length

J, current density

B, magnetic induction

V, velocity

, conductivity (LM or wall)

a,t, duct size, wall thickness

Thin wall MHD pressure drop formula

Why?
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A perfectly insulated “WALL” can eliminate the 

MHD pressure drop. But is it practical?

• Net JxB body force p = cVB2

where c = (tw w)/(a )

• For high magnetic field and high 
speed (self-cooled LM concepts 
in inboard region) the pressure 
drop is large

• The resulting stresses on the 
wall exceed the allowable stress 
for candidate structural 
materials

• Perfect insulators make the net 
MHD body force zero

• But insulator coating crack 
tolerance is very low (~10-7). 

– It appears impossible to develop 
practical insulators under fusion 
environment conditions with large 
temperature, stress, and radiation 
gradients

• Self-healing coatings have been 
proposed but none has yet been 
found (research is on-going)

Lines of current enter the low 
resistance wall – leads to very 
high induced current and high 
pressure drop 

All current must close in the 
liquid near the wall – net drag 

from jxB force is zero

Conducting walls Insulated walls

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



18

Major R&D status and future issues 
– Solid blanket

• Fabrication technology development

- Structural material: RAFS (JLF-1, F82H, etc) optimised, 

need to adjust the composition to meet specific mechanical 

strength requirements

- Blanket box structure fabrication including the FW:

need to optimise bonding conditions and the accumulation of  

mechanical data on bonded materials

- Breeder and multiplier pebble mass fabrication technology:

agglomeration method and the sol-gel method fabrication 

techniques for breeder pebble fabrication, rotating electrode 

method for multiplier pebble fabrication



19

• T breeding and recovery technology development

- Thermo-mechanical characteristics research for breeder 

and multiplier pebble bed: appropriate temperature range for

proper T release and preserving the mechanical integrity of the 

pebble bed. The mechanical characteristics of a pebble bed are 

a new area of research incuding combined behaviour of the thermal 

and mechanical characteristics and irradiation effects.

- T generation and release characteristics: BEATRIX-II, JMTR

- T recovery and fuel cycle technology: TPL (JAEA), TSTA (LANL)

• Cooling technology development

- Coolant handling technology: pressurised water and He cooling 

technology already established by experience with PWR, BWR, 

HTG test R

- FW cooling technology: improving heat transfer of the built-in 

cooling channel of the FW panel

Major R&D status and future issues 
– Solid blanket
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• Durability development, such as irradiation 

characteristics

- General aspects: certifying the irradiation performance of 

materials, degradation of materials by thermal cycles and long-

term operation, FW durability in high-heat flux, and chemical 

effects (corrosion, mass transfer, etc)

- Structural material: need to clarify He production and 

the H embrittlement effect

- Breeder material: need to investigate the irradiation effects on 

the thermo-mechanical characteristics

- Multiplier material: need to formulate Be oxidation rate and 

corrosion rate of contacting structureal materials

Major R&D status and future issues 
– Solid blanket
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• Safety and environmental susceptibility development

- General issue: T inventory reduction, evaluation of off-normal

performance, development of reduced-activation materials, 

reduction and recycling of radioactive waste

- T inventory: by adjusting breeder temperature within the 

proper range, it can be reduced to less than 1 kg.

- Reduction of induced activation: RAFS

- Off-normal performance evaluation: The largest impact caused 

by loss of coolant in TBM box (ITER). Further investigation 

needed on H generation reaction between Be in contact with 

water in a high temperature environment

- Innovative material development

Major R&D status and future issues 
– Solid blanket
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• Economically reduced cost development

- Remote handling technology: important to increase the reactor 

availability, affecting the design of the hot cell facility, reactor 

building, etc.

- Blanket replacement strategy: time saving replacement method 

(whole sector replacement)

Major R&D status and future issues 
– Solid blanket
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• Liquid Li self-coolded blanket

- development of an electrical insulation coating to reduce MHD  

pressure drop

- evaluation of heat transfer and hydraulic characteristics of 

liquid Li in a strong magnetic field

- evaluation of compatibility between liquid Li and structural  

materials (화학적으로 활성)

- establishment of safe handling techniques for liquid Li

- development of industrial bases for V alloys and box structure 

fabrication technology

- heavy irradiation data for V alloys

Major R&D status and future issues 
– Liquid blanket
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• LiPb blanket

- development of T permeation barrier coatings

- evaluation of the corrosion effect of LiPb on structural materials

- establishment of T recovery technology

• Molten slat (FLiBe) blanket

- development of T safe confinement technology

- development of corrosion resistance technology

- development of T and chemical stability control technology

- development of FLiBe handling technology and F chemical 

potential control technology

Major R&D status and future issues 
– Liquid blanket
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Current status and future issues of 
materials development
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Structural materials

• Major structures of the fusion reactors and 

their operating conditions
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• Requirements for reduced activation

- low decay heat during maintenance

- low-induced activity acceptable for the shallow land burial and 

materials recycling

• Alloy development

- need to manage the property changes during service for

extending the lifetime of the power plant

- need to apply the alloy designing method based on the 

knowledge of the radiation induced microstrucural change

• Due to severe service condition, a rather long time will be 

needed for the development and this program should be 

carefully planned and managed.

Structural materials
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• Time evolution of contact dose rate in the FW assuming 

the periodic displacement at a fluence of 10 MWa/m2

- shallow land burial supposed to be utilised after 100 years of cooling

- replacement of alloying elements by reduced activation elements is

essential to reduce the induced activity below the acceptable level for 

shallow land burial.

Structural materials
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• Relations of energy systems and their materials

Structural materials
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• Development of structural materials and their target performances

in feasible temperatures and neutron fluences

- lower bound temperature: limited by the embrittlement during

irradiation (DBTT; Ductile-Brittle Transition Temperature)

- upper bound temeprature: limited by the transmutation-produced 

He embrittlement and irradiation creep

Structural materials

- Ferritic/martensitic steels 

have been used successfully 

as duct materials of the fuel 

assemblies for FBRs to a 

displacement damage level of 

about 150 dpa (~15 MWa/m2).
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Structural materials

- Ferritic/martensitic steels 

have been used successfully 

as duct materials of the fuel 

assemblies for FBRs to a 

displacement damage level of 

about 150 dpa (~15 MWa/m2).

• Development of structural materials and their target performances

in feasible temperatures and neutron fluences

- lower bound temperature: limited by the embrittlement during

irradiation (DBTT; Ductile-Brittle Transition Temperature)

- upper bound temeprature: limited by the transmutation-produced 

He embrittlement and irradiation creep
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• Critical issues for the development of RAFS

- to manage the radiation induced embrittlement at low temperatures

- improvment of the high-temperature strength:

dispersion within the alloy of nanometer-size oxide particles

- improvment of the corrosion resistance:

composite materials including graded materials technology

- improvment of processes to enable the large-scale production

• Managing the radiation induced embrittlement

- strongly affected by the produced He and H due to transmutation 

- Addition of the minor alloying elements and the optimisation of

the mechanical heat treatment to make fine dispersion of 

radiation produced He and H cavities seems to be effective in 

retarding embrittlement.

- need to apply the recent progress of the fracture mechanics 

utilising the margins of the small-size components to brittle 

fracture and utilising the experience of ITER

Structural materials
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• Load during the 30-year-operation of FPP

- beyond the present ability to estimate the lifetime of FS based

on FBR experience and the present knowledge about irradiation 

induced property changes

Structural materials

Neutron wall load 90 MWa/m2, 3 MW/m2

Displacement damage 900 dpa

He generation ratio 10000 appm

H generation ratio 40000 appm
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Structural materials
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Structural materials
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Structural materials
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Structural materials
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Tritium breeder materials



39

Tritium breeder materials
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Tritium breeder materials



Tritium breeder materials
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Neutron multiplier materials
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Neutron multiplier materials


