
Fusion Reactor Technology I (459.760, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Gap Analysis for Fusion Development 🌽

	Issue	Approved devices	ITER	IFMIF	DEMO Phase 1	DEMO Phase 2	Power Plant
	Disruption avoidance	2	3		R	R	R
Plasma	Steady-state operation	2	3		r	r	r
physics/	Divertor performance	1	3		R	R	R
Plasma	Burning plasma (Q>10)		3		R	R	R
performance	Start up	1	3		R	R	R
	Power plant plasma performance	1	3		r	R	R
	Superconducting machine	2	3		R	R	R
Enchling	Tritium inventory control & processing	1	3		R	R	R
Enabling technologies	Power plant diagnostics & control	1	2		r	R	R
technologies	Heating, current drive and fuelling	1	2		r	R	R
	Remote handling	1	2		R	R	R
Materials &	Materials characterisation			3	R	R	R
Component	Plasma-facing surface	1	2		3	4	R
Nuclear	Vessel/First Wall /blanket/divertor materials		1	1	3	4	R
performance	Vessel/ First Wall /blanket/divertor components		1	1	2	4	R
& lifetime	T self sufficiency		1		3	R	R
Final System	Licensing for power plant	l	2	1	3	4	R
Final System	Electricity generation at high availability				1	3	R

Will help to resolve the issue May resolve the issue Should resolve the issue Must resolve the issue Inputs:

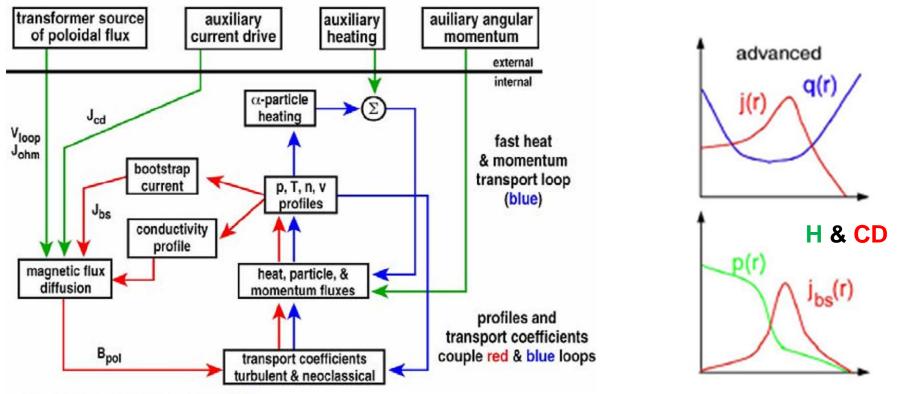
Pre-existing Solution is desirable Pre-existing Solution is a requirement

UKAEA October 2007 (revised/improved version of original table in UKAEA FUS 521, 2005).

I. Cook, D. Ward, L. Baker and T. Hender, "Accelerated Development of Fusion", UKAEA FUS521, February 2005

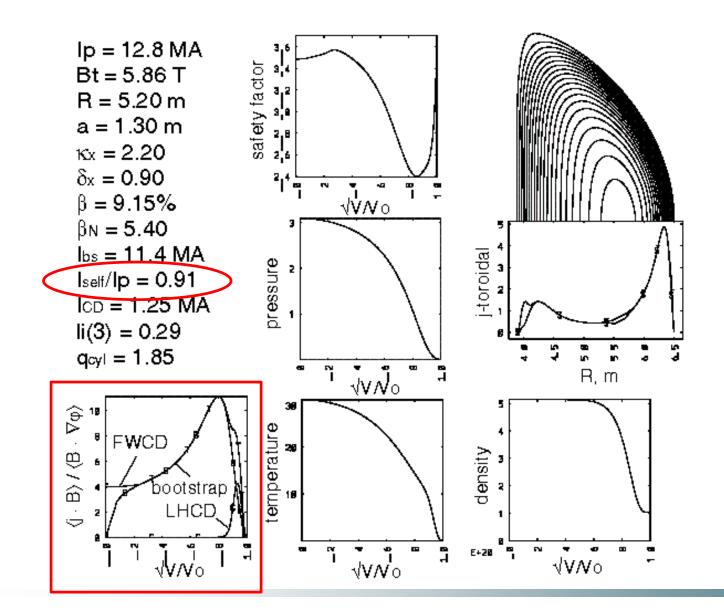
r

R


Self-Generated and Linked Control

Alpha heating dominant, $Q=P_f/P_{H\&CD} > 20-30$ Bootstrap current fraction, $f_b > 70\%$

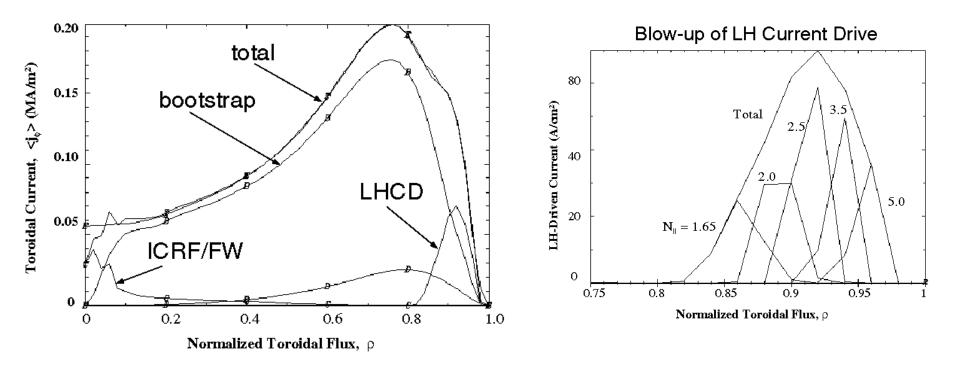
Burning Plasma Transport Couplings



slow magnetic flux transport loop (red) Figure from P. Politzer et al., ITPA meeting Lisbon 2004

→ Physics Issue: Transport Control for AT regime operation

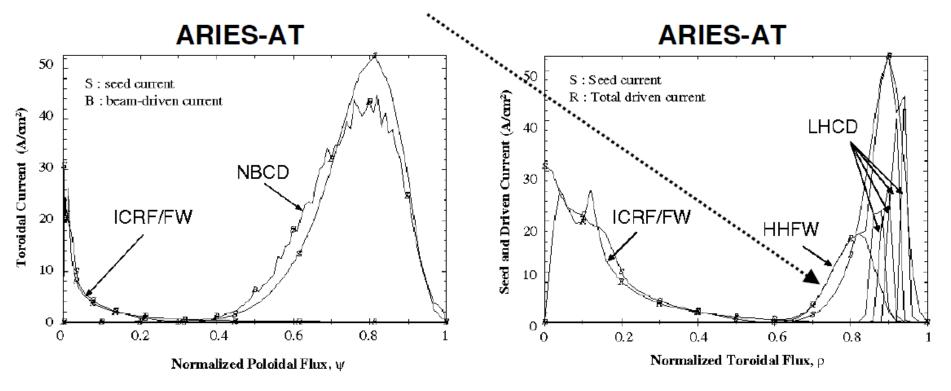
ARIES-AT Equilibrium


ARIES-AT External Current Drive

ICRF/FW on-axis CD; 96 MHz, N||=2, PcD=5 MW, h=0.032 A/W

LHCD off-axis CD; 3.6 GHz , N||=1.65-3.5, PcD=24.5 MW, h=0.024-0.053 A/W;

2.5 GHz, NII=5.0, PCD=12.5 MW, h=0.013 A/W

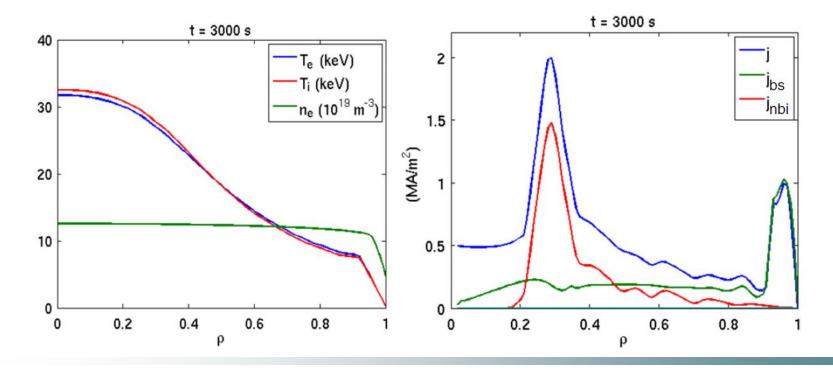


ARIES-AT Alternative Current Drive

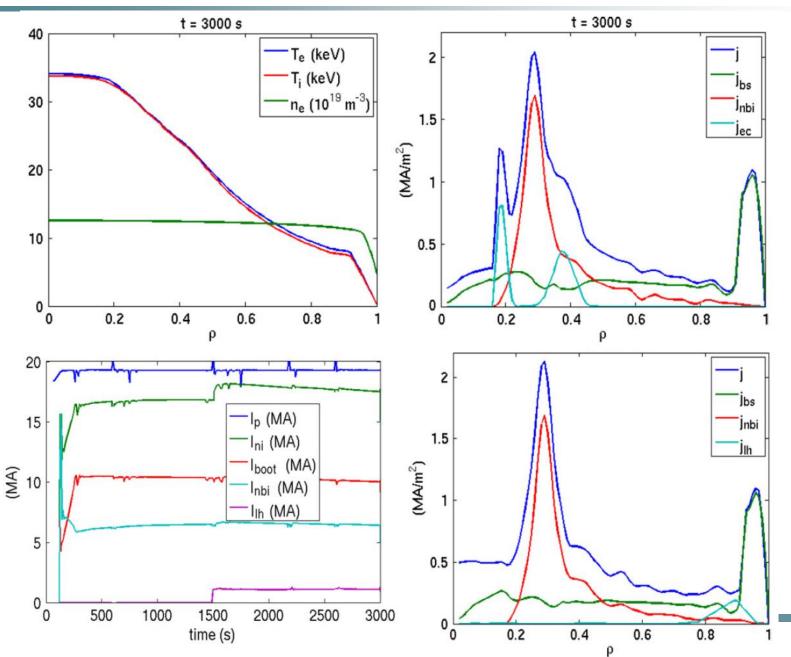
120 keV NBI provides plasma rotation and CD for $\rho > 0.6$, P_{NB} = 44 MW, P_{FW} = 5 MW (NFREYA)

HHFW at $20\omega_{ci}$ provides current at $\rho > 0.7 - 0.9$, $P_{LH} = 20$ MW, $P_{HHFW} = 20$ MW, $P_{FW} = 5$ MW

EU DEMO CD Scenarios Based on PPCS-C



Global characteristics of the DEMO operation scena


 Table 3. Global results of the DEMO operation scenarios.

Parameter	Value
Major radius R (m)	7.5
Minor radius a (m)	2.5
Elongation/Triangularity	1.9/0.47
$B_{\rm t}({\rm T})$	6.0
I (MA)	19.0
$n_{\rm e,0}/\langle n_{\rm e} \rangle \ (10^{19} {\rm m}^{-3})$	11.0/10.1
$n_{\rm e}/n_{\rm gw}$	1.20

Parameter	Scenario 1	Scenario 2	Scenario 3
$T_{\rm e,0} (\rm keV) / \langle T_{\rm e} \rangle (\rm keV)$	31.7/14.6	34.5/15.4	31.7/14.5
$T_{i,0} (\text{keV})/\langle T_i \rangle (\text{keV})$	32.5/14.5	34.3/15.0	32.0/14.4
$P_{\rm fus}/P_{\rm add}$ (MW)	2600/98.0	2820/164	2600/164
$P_{\rm ES}/P_{\rm brems}$ (MW)	28.0/104	34.0/107	28.0/104
$f_{\rm BS} (\%) / Q$	52.6/26.5	55.8/17.2	52.1/16.4
q_0/q_{95}	2.6/6.0	10.0/6.0	2.7/6.0

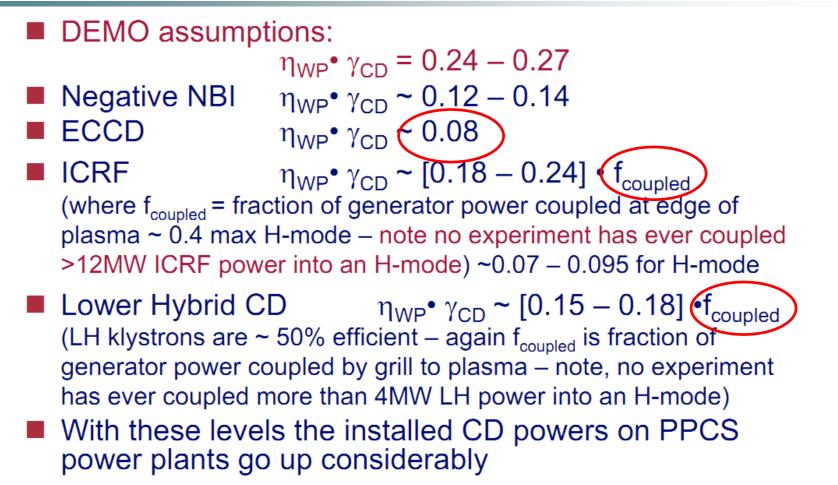
EU DEMO CD Scenarios Based on PPCS-C

8

핵융합로공학 선행연구센터

RF

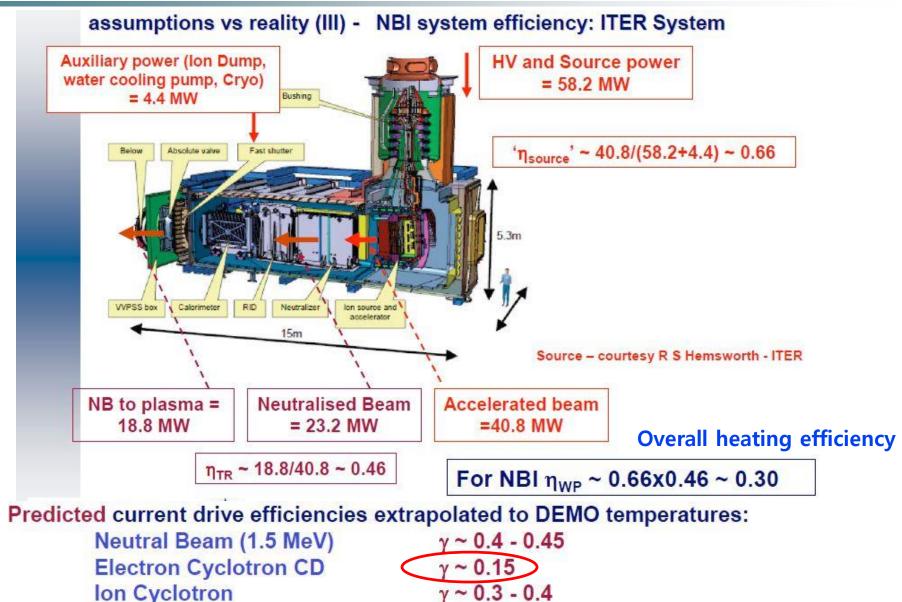
H & CD Efficiency for DEMO



Three steps

- 1. conversion of electric power into power launched in plasma: conversion efficiency η_{conv}
- 2. coupling of launched power to plasma: coupling efficiency η_{coupl}
- 3. current drive efficiency (current driven per power unit coupled to plasma ϵ_{CD})

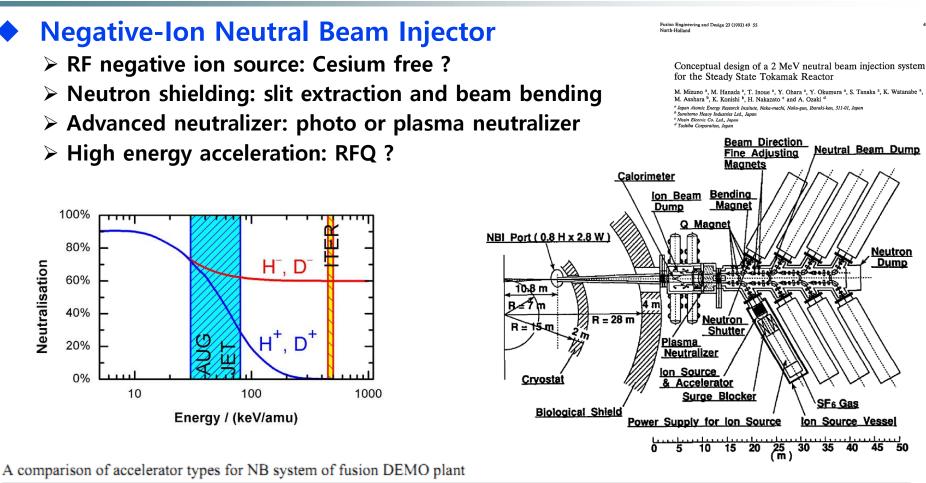
H & CD Efficiency for DEMO



→ Physics Issues: coupling and CD efficiency at high density plasmas
 → Technology Issues: power source efficiency, launcher compatibility

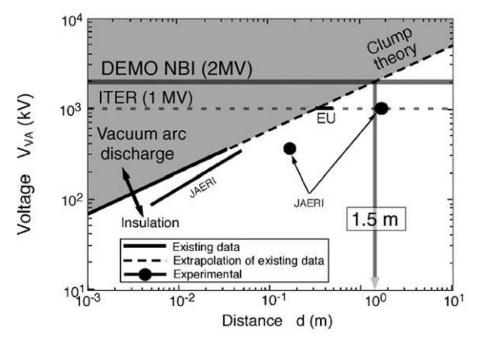
H & CD Efficiency for DEMO

Lower Hybrid CD

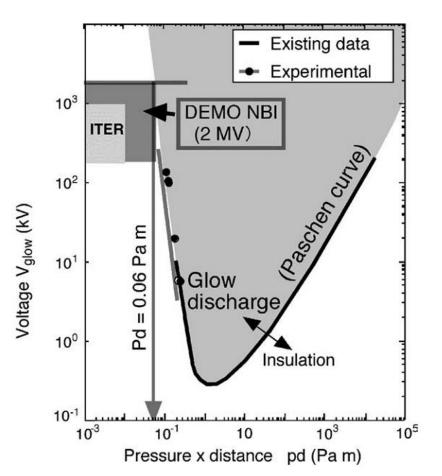


 $\gamma \sim 0.3 - 0.35$

NB Technical Issues for DEMO

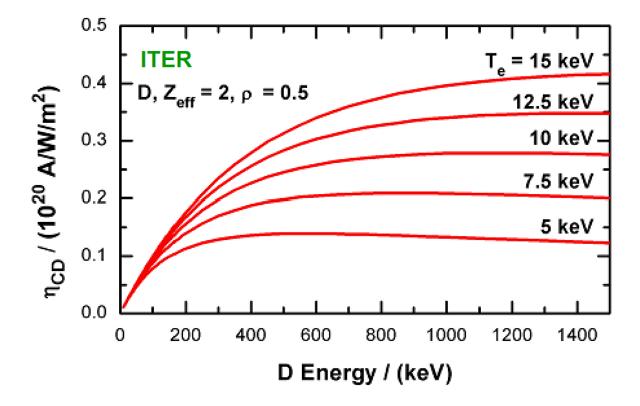


	Electrostatic accelerator		RFQ accelerator
Beam energy	1.5-2.0 MeV, limited by vacuum insulation		>2 MeV
Current	Up to several tens ampere		In the order of 100 mA
Acceleration efficiency	≥90%		~25%
Technology basis	Extrapolation of existing technology	ΠW. KFQ?	~25% New development required


NB Design for J-DEMO

Inoue, FED2006

From Fig. 1, necessary insulation distance to avoid vacuum arc discharge is estimated to be 0.8-1.5 m for 1.5-2 MeV. From Fig. 2, it is found that the threshold *Pd* value for the glow discharge is 0.06 Pa m. One of the crucial positions for the glow discharge would be along the accelerator exterior: The vacuum insulation distance is 1.5 m for 2 MV, and the pressure is assumed to be 0.02 Pa from the ITER design (*Pd*=0.03 Pa m).


NB Current Drive Efficiency

$$I_{NBCD} = I_{NB} + I_R = I_{NB} \left(1 - G \cdot \frac{Z_b}{Z_{eff}} \right)$$

$$\eta_{CD} = \frac{I_{NBCD} n_e R}{P_{dep}}$$

deposition power of the beam P_{dep}

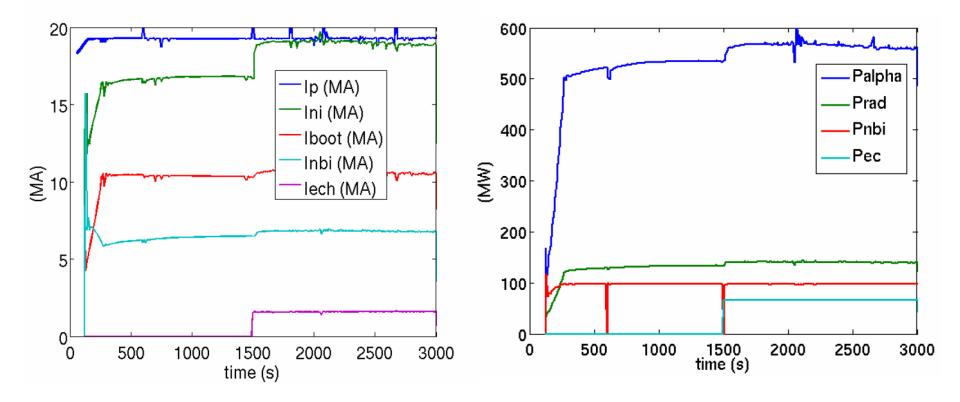
ITER: 2 MA current drive! (33 MW heating power)

functions of EC waves in DEMO: same as in ITER ?

- plasma startup
- heating for access to H-mode
- > q-profile control (mid-radius CD)
- > MHD control (NTM, other ?)
- > CD for steady-state ?
- Bootstrap control ?
- Impurity control ?
- > Disruption control ?

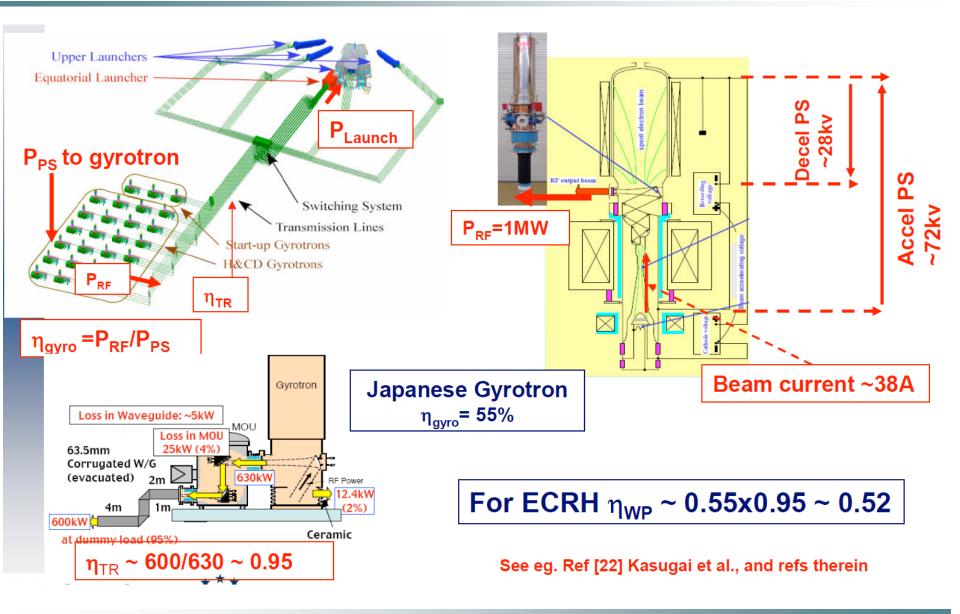
likely system requirements:

- > frequency ~ 200 GHz, cw, power ~ 50 100 MW
- Full control of absorption location
- efficiency / availability / reliability (to be quantified in function of the missions of DEMO ...)


Steady-State Scenario with ECCD Global Parameter

G. Giruzzi

- $I_p = 19$ MA, $B_T = 6$ T, $n_{e0} = 1.25 \ 10^{20} \ m^{-3}$
- $f_D/(f_D+f_T) = 50\%, f_{Be} = 3\%, f_{Ar} = 0.12\%, \tau_{He}*/\tau_E = 5 \ (Z_{eff} \sim 1.9)$
- P_{NBI} = 98 MW (2 MeV, off-axis), P_{EC} = 66 MW (200 GHz, t > 1500 s)


T_{ped} ≈ 7.8 keV

transport model: GLF23

ECH for DEMO

EC Technical Issues for DEMO

Launcher

- > Steering mirror at high heat and neutron irradiation
- Remote wave launcher

• Power sources : Gyrotron or FEM (Free Electron Maser) ?

- > High frequency(>200GHz), high power(>1MW), CW sources
- > Efficient(>50%): multi-stage depressed collector
- > High power window: synthetic diamond
- > Multi-frequency source

Comparison of Gyrotron and FEM Oscillators

Table XXXIV lists a comparison of the main performance parameters and features of gyrotron oscillators and FEMs for ECRH of plasmas in nuclear fusion research. The important advantage of the FEM is its fast and continuous frequency tunability and the possibility of very high peak power but the gyrotron is a much simpler device [4]. Up to now, the cylindrical cavity gyrotron is the only millimeter wave source which has had an extensive on-the-field experience during fusion plasma heating experiments over a wide range of frequencies and power levels (8-170 GHz, 0.1-1.0 MW) [5].

1	Beam voltage	Gyrotron Oscillator (cyclotron resonance maser axial magnetic field) low (70 - 95 kV)	Free Electron Maser Oscillator (periodic transverse magnetic field) high (0.2 - 2 MV)	10.	. Number of internal quasi-optical mirrors	2-4 on ground potential	15 - 25 phase coherence required
2.	Magnetic field (140 GHz)	high (5.5, 1 st harmonic)	low (0.2 T, wiggler)			0.9% ohmic losses	mostly on 2 MW potential 6% ohmic losses
3.	Frequencies	8 - 650 GHz	270 MHz - visible	11.	Absorbed power on first	3 kW	12 kW
4.	Frequency tunability	$\Delta U_{beam} + \Delta U_{mod}$:	∆U _{beam} :		mirror (1 MW, 140 GHz)		
		fast step tuning (5%)	fast continous tuning (10%)	12	Internal microwave	not required	required
		ΔB: slow step tuning (35%)	slow mechanincal tuning (50%)		diagnostics		
5.	Electron beam	magnetron injection gun	Pierce elctron gun, acceleration and deceleration tubes, beam optics	13.	. Output power (140 GHz) present status	high average power 1 MW / 12 s 0.92 MW / 1800 s	2 GW/20ns but very low duty cycle (LLNL amplifier)
6.	Ohmic losses in cavity	cutoff cavity	oversized circuit	_		(coax. 2.2 MW / 17 ms)	
		2 kW/cm ²	far away from cutoff	14.	Exp. system efficiency	45%	low
7.	Power density in cavity	high	low		without energy recovery	32%	5 - <mark>1</mark> 0%
8.	Longitudinal mode	single mode operation	nonlinear temporal dynamics	15.	. Collector loading	relatively low	high
	competition in cavity		can bring broad frequency	16	. Theor. system efficiency	60%	60%
			spectrum		with depressed collector	(exp. 50%)	(exp. 14%)
9.	Linearly polarized output	generated by internal	linearly polarized, low-order	17.	Physical size	3 m x 3 m x 3 m	12 m x 3 m x 3 m
	mode	quasi-optical mode converter	resonator mode	18	. Power per unit (140 GHz)	1 MW (coax., 4 MW)	5 MW

Tunable Free Electron Maser (FEM) Source

Electron beam line (with multi-stage depressed collector)

electron beam current :	12 A
body current :	< 20 mA
gun voltage :	80 kV
type of gun	triode gun, cathode operated in space-charge limited regime
normalized beam emittance	6 p mm mrad (before interaction)
electron beam energy :	1.35 - 2.0 MeV (130 - 250 GHz operation)
acceleration / deceleration :	electrostatic
focusing system	solenoids in period focusing arrays
pulse length	2 ms - 100 ms

Undulator

period	40 mm		
pole gap	25 mm		
number of periods	34		
peak field strength section 1	0.20 T, 20 cells		
section 2	0.16 T, 14 cells	mm	-wave sy
drift gap	35 - 60 mm length, adjustable	1	-
focusing scheme	equal focusing in x- and y-direction		primary
matching scheme	1/2 cell 1/4 strength, 1/2 cell 3/4 strength		wavegui
5	3 , 3	- 1	wayoqui

ystem

primary waveguide :	rectangular corrugated
waveguide dimensions :	15 x 20 mm ²
waveguide mode :	HE ₁₁
feedback and outcoupling :	via optical beam multiplication in stepped waveguides
feedback coefficient :	adjustable : 0 - 100 %
output window :	Brewster-angle boron-nitride window

mm-wave output power

mm-wave frequency ¹⁾ :	130 - 260 GHz
on-line tunability ²⁾ :	5 % on ms time-scale
output power :	1 MW
electronic efficiency :	5 %
system efficiency :	> 50 %

1) Slow frequency tuning by changing the electron beam energy from 1.35 to 2.0 MeV, and adjusting the height of the stepped waveguides (mechanical adjustment).

2) Frequency adjustable on ms-time scale, via a sweep of the electron beam energy. The bandwidth of the stepped waveguides is sufficient to sweep over 5%.

Table XXXIII: Design parameters of the FOM-FEM [145-155,750]. The project was terminated in The Netherlands in the autumn of 2001 and is being rebuilt in Israel.

Window Materials for High Power Gyrotron

Using the available material parameters and employing various beam profiles, finite element computations revealed the options for 170 GHz, 1 MW, CW operation given in Table XII [38-42,45,423]. The diamond options 2 and 3 being water cooled, are preferred for their simplicity, in particular for use as torus window.

	Material	Туре	RF-Profile	Cross-Section	Cooling
1	Sapphire/Metal	distributed	flattened Gaussian	rectangular (100 mm x 100 mm)	internally water cooled (300 K) tan δ = 2-5 · 10 ⁻⁴ , k = 40 W/mK
0	Diamond	single-disk	Gaussian	circular (Ø = 80 mm)	water edge cooled (300 K) tan $\delta = 2 \cdot 10^{-5}$, k = 1900 W/mK
3	Diamond	single-disk Brewster	Gaussian	elliptical (152 mm x 63.5 mm)	water edge cooled (300 K) tan $\delta = 2 \cdot 10^{-5}$, k = 1900 W/mK
4	Silicon Au-doped	single-disk	Gaussian	circular (Ø = 80 mm)	edge cooled (230 K), refrigerator tanδ = 2.5 · 10 ⁻⁶ , k = 300 W/mK
5	Silicon Au-doped	single-disk	Gaussian	circular (Ø = 80 mm)	LN ₂ edge cooled (77 K) tanδ = $4 \cdot 10^{-6}$, k = 1500 W/mK
6	Sapphire	single disk	flattened Gaussian	elliptical (285 mm x 35 mm)	LN ₂ edge cooled (77 K) tanδ = $6.7 \cdot 10^{-6}$, k = 1000 W/mK
Ø	Sapphire	single disk	Gaussian	circular (Ø = 80 mm)	LNe or LHe edge cooled (27 K) tan δ = 1.9 · 10 ⁻⁶ , k = 2000 W/mK

Note that the power capability of options @, ③, ⑤ and @ is even 2 MW.

Table XII: Options for 1 MW, CW, 170 GHz gyrotron windows [38-42,45,423].

High Frequency Gyrotron at 1st Harmonic

Institution	Frequency [GHz]	Mode	Power [MW]	Efficiency [%]	Pulse length [µs]			
IAP,	250	TE _{20,2}	0.3	31	30 - 80			
Nizhny Novgorod	350		0.13	17	30 - 80			
[65,66]	430		0.08	10	30 - 80			
	500	TE _{28,3}	0.1	8.2	30 - 80			
	540		0.06	6	30 - 80			
	600	TE _{38,2}	0.05	5	30 - 80			
	650		0.04	4	40			
MIT, Cambridge	107.1	TE _{21.6}	0.94	24	3			
[48,217,393,396-401,	110	TE _{22.6}	1.67	42	3			
468-475]		TEM ₀₀	1.5	48 (SDC)	3			
	113.2	TE _{23.6}	1.18	30	3			
	140	TE ₀₄	0.025	7.4	3	PBG resonator BW = 35%		
	140	TE _{15,2}	1.33	40	3			
	148	TE _{16,2}	1.3	39	3			
	166.6	TE _{27.8}	1.50	34	3			
	170.0	TE _{28,8}	1.50	35	3			
	173.4	TE _{29,8}	0.72	29	3			
	188	TE _{18,3}	0.6		3			
	225	TE _{23,3}	0.37		3			
	231	TE _{38.5}	1.2	20	3			
	236	TE _{21,4}	0.4		3			
	267	TE _{28,4}	0.2		3	Ē		FAR
	280	TE _{25,13}	0.78	17	3	\wedge		
	287	TE _{22,5}	0.537	19	3		Ē	H
	320	TE _{29,5}	0.4	20	3	H		
	327	TE _{27,6}	0.375	13	3	🗶 진행방향	진행방향	▲ 진행방향
UNIVERSITY, Fukui	278	TE33	0.001	5	1000	TEM	TE	TM
[450,455]	290	TE ₆₂	0.001	4	1000	A .A .		77/2 (shalls as 10-)
	314	TE_{43}	0.001	4	1000	<u>_IVIC</u>	ode란대체무엇일	<u>אר: (man.com)</u>

 Table XIV:
 Capabilities and performance parameters of pulsed millimeter- and submillimeterwave gyrotron oscillators operating at the fundamental electron cyclotron resonance.

High Frequency Gyrotron at 2nd Harmonic

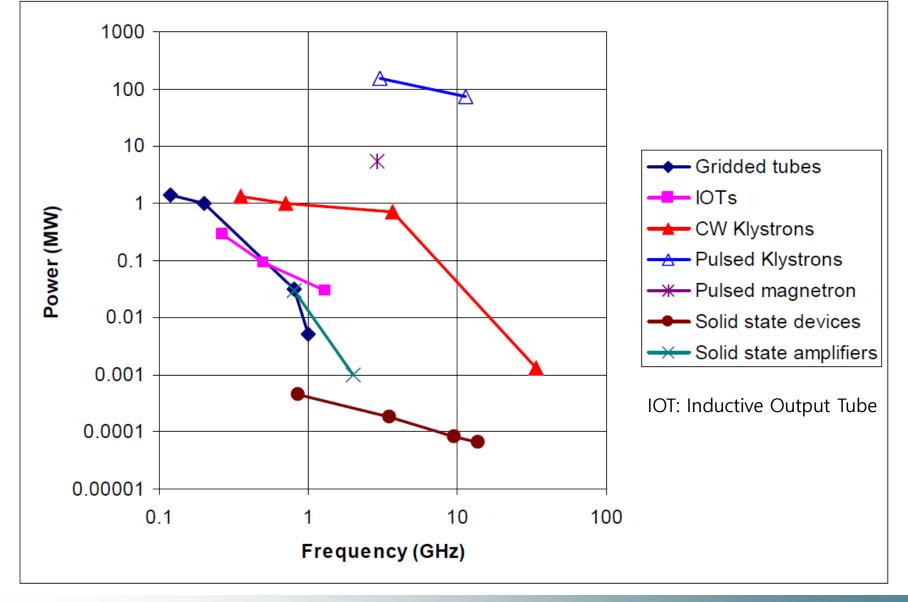
Institution	Frequency [GHz]	Mode	Power [kW]	Efficiency [%]	Pulse length [ms]
CPI ¹⁾ , Palo Alto [445]	250	TE _{11,1} /TE _{11,2}	10	3.4	0.1
IAP, N. Novgorod [65,66,446]	157 250	ΤΕ ₀₃ ΤΕ ₀₂	2.4 4.3	9.5 18	CW CW
[05,00,440]	250 250 326	$\begin{array}{c} TE_{65} \\ TE_{23} \end{array}$	1 1.5	5 6.2	CW CW
MIT, Cambridge [447,448]	209 241	TE ₉₂ TE _{11,2}	15 25	3.5 6.5	0.001 0.001
	302 339	TE_{34}	4	1.5 3	0.0015
	363 417	TE _{10,2} TE _{11,2} TE	4 7 15	2.5 6	0.0015 0.0015
	417 457 467	TE _{10,3} TE _{15,2} TE _{12,3}	7 22	2 3.5	0.0015 0.0015
	503	$TE_{12,3}$ $TE_{17,2}$	10	5.5	0.0015
UNIVERSITY, Fukui [67-70,449-461]	383 402	TE ₂₆ TE ₅₅	3 2	3.7 3	1 1
. / 1	576	TE ₂₆	1	2.5	0.5

¹⁾ Communications & Power Industries; formerly VARIAN

Table XIII a: Capabilities and performance parameters of mm- and submillimeter-wave gyrotrons operating at the second harmonic of the electron cyclotron frequency, with output power ≥ 1 kW.

IC/LH Technical Issues for DEMO

Launcher : coupling with minimal plasma material interactions


> High heat and neutron irradiation

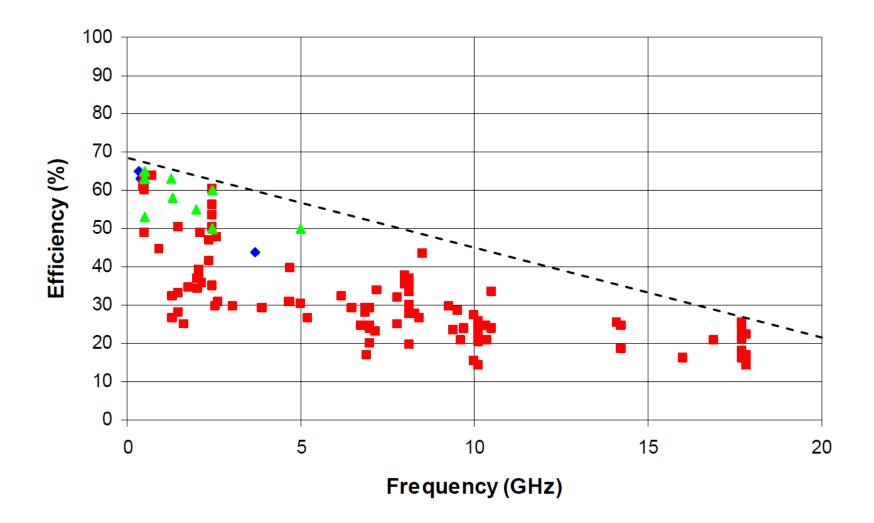
> Folded waveguide, PAM(passive active multi-junction), etc

Power sources : Klystron

RF Power Sources : State of the Art

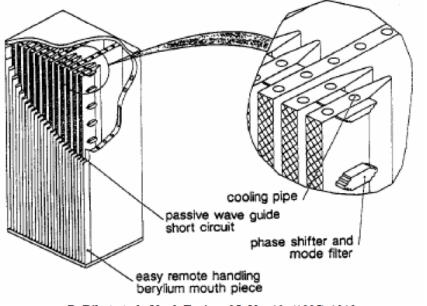
CW Klystrons

Pulsed Klystrons


Frequency	352	700	3700	MHz	Frequency	2.87	3.0	11.4	GHz
Beam voltage	100	92	60	k∨	Beam voltage	475	590	506	k∨
Beam current	19	17	20	A	Beam current	620	610	296	A
RF output power	1.3	1.0	0.7	MW	RF output power	150	150	75	MW
Efficiency	67	65	44	%	Efficiency	51	42	50	%

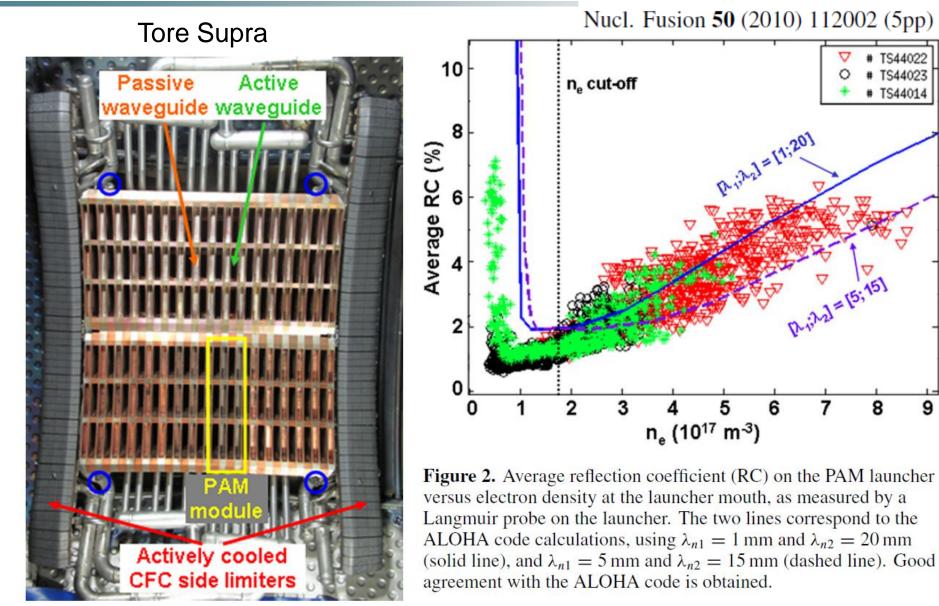
Note: Breakdown voltage is higher for short pulses than for DC

CW Klystron Power Efficiency



CW Klystrons

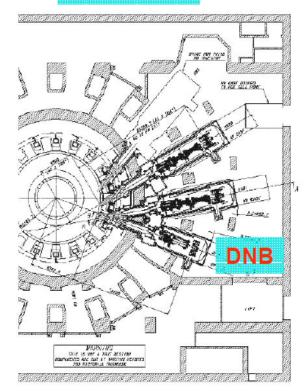
Launcher Development for LHCD


- Robust LH launchers are required to face the harsh plasma environment of ITER:
 - Electromechanical stresses (~ 100 MPa)
 - Strong thermal loads (heat flux = 0.5 MW/m2, neutron flux = 0.5 MW/m2)
- Thick vertical walls between *active* waveguides (e.g. 13.25 mm for ITER)
 - mechanical stiffness, effective neutron shielding, cooling system in the walls

PAM: Passive Active Multi-junction

- •Advantages deriving from the self-matching properties of the multijunction.
- **Passive** (short-circuited) waveguides (depth $\cong \lambda/4$) at the mouth (within the thick walls) that act as reflectors radiating back toward the plasma part of the reflected RF power
 - enhance the coupling properties of the launcher by increasing its periodicity.
 - ➤ allows significant reduction of the height of all the odd order peaks in power spectrum with the help of optimized depth of the passive waveguides and the E-plane bi-junction phase shift.
- •Best performances of the PAM expected at low plasma density (close to cut-off) due to the effect of passive waveguides:
 - ➤ the launcher could be positioned far from the plasma where, in addition, the thermal loads are smaller.

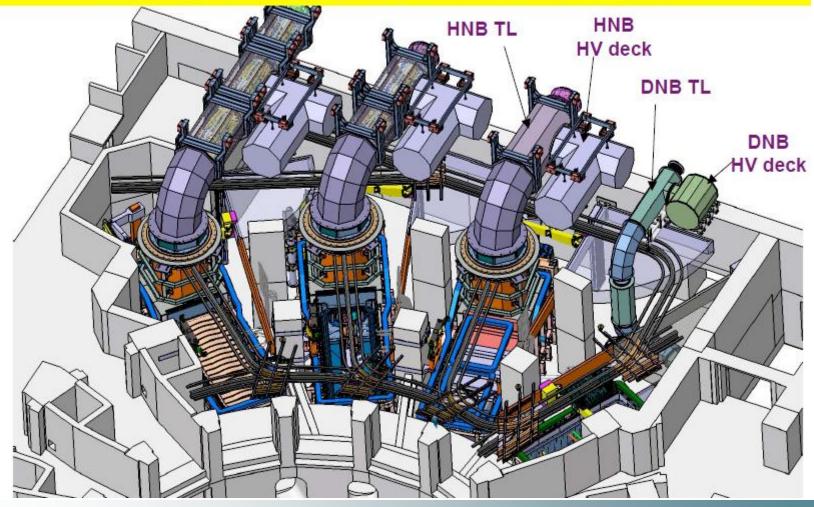
Launcher Development for LHCD



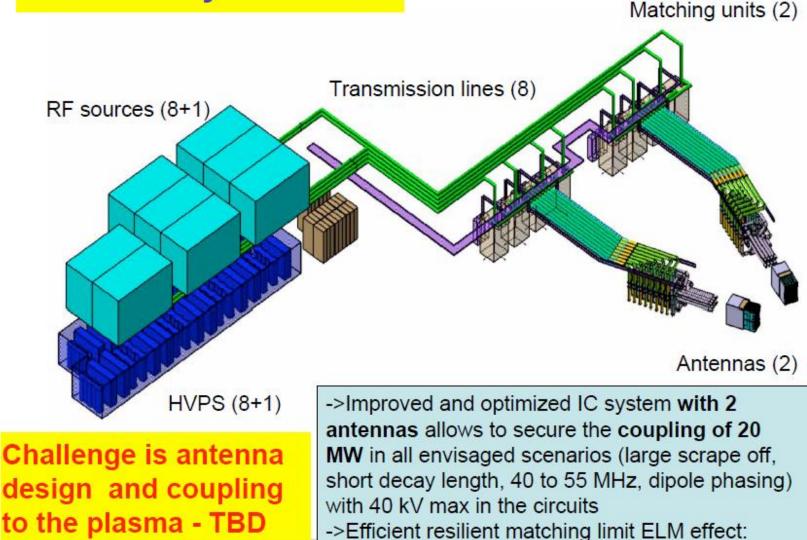
ITER Heating and Current Drive System

핵융합로공학 선행연구센터
CARFRE
Center for Advance Research in Fusion Reactor Engineering

P _{aux} for Q=10 nominal scenario: 40-50MW					
Heating System	Stage 1	Possible Upgrade	Remarks		
NBI (1MeV –ive ion)	33	16.5	Vertically steerable (z at Rtan -0.42m to +0.16m)		
ECH&CD (170GHz)	20	20	Equatorial and upper port launchers steerable		
ICH&CD (40-55MHz)	20		$2\Omega_T$ (50% power to ions Ω_{He3} (70% power to ions, FWCD)		
LHH&CD (5GHz)		20	1.8 <n<sub>par<2.2</n<sub>		
Total	73	130 (110 simultan)	Upgrade in different RF combinations possible		
ECRH Startup	2		126 or 170GHz		
Diagnostic Beam (100keV, H⁻)	>2				


NBI Layout

ITER NBI System


NBI: 1 MeV beams – 16 MW power deposited in the plasma by each Development is a challenge – test bed under construction in Padua first heating and the diagnostic beam installed in 2020 second in 2022

ITER IC H & CD System

SOFE-June

reflected power is kept below 1% of forward power

ITER ECH Gyrotron Development

2 MW gyrotrons from EU, 1 MW from JA and RF.

• Diode type gun gyrotrons from EU and RF, triode type from JA (requiring an additional PS for the anode).

Challenge is the development of the sources – good progress

And the development of the lounchers – very good progress

Short pulse prototype

2MW short pulses

DEMO cannot have as extensive an array of diagnostics as ITER. However, *DEMO* must operate reliably and effectively from the beginning. Hence, the latter phase of operation in ITER must be used to determine and optimize the minimal set of diagnostic measurements for operating and controlling *DEMO*'s plasmas.

In some cases, the loss of key measurements could be compensated by the development of validated theories and modeling, filling the gaps between measurements available from a reduced diagnostic set. In other cases, there will be a serious need for the development of new and/or alternate techniques which would be compatible with the environment found in a reactor. The development of these techniques will require a long and dedicated process ranging from the laboratory test to a full implementation on ITER or equivalent burning plasma experiment.

R&D required (non-exhaustive)

- New diagnostic development for replacing standard systems for T_e , n_e (Thomson scattering), T_i , rotation, (CXRS), q profile (MSE), radiated power (bolometers), etc.

- Dedicated program for radiation hardening of components to withstand high fluence while operating in high neutron flux.

- Development of easily withdrawn and replaced, modular 'front-end' components.

- A new emphasis on the reliability and robustness of operation and calibration of diagnostic systems.

- A strong program in microwave technology, which could provide many of the solutions for the issues raised.

Diagnostics for DEMO

Device Protection

Measurements required:

Contributing plasma measurement	
Disruption precursors, large ELMs	
High local first wall/divertor plate temperatures	
Magnetic or sum of kinetic measurements	
Pressure and partial pressures	
Magnetic equilibria	
Density, temperature, rotation profiles	
Lost- alphas, high local wall temperature	
Many measurements	

Issues: Unlikely to have beams and x-ray measurements, as they may fail in radiation, so measurements such as those of T_i and rotation will require development. Magnetic diagnostics are likely to fail for very long pulses. Optical/IR systems will suffer from first-mirror degradation. Monitoring of the first wall will be severely limited.

Control

Measurements required:

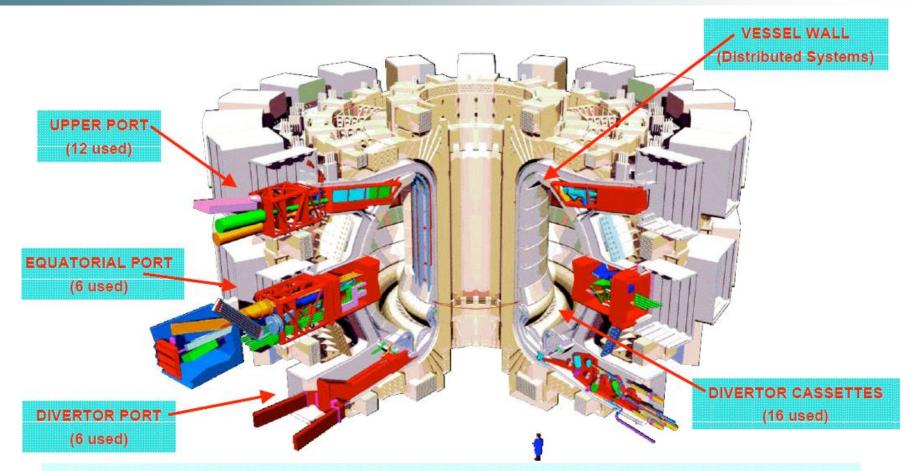
Parameter to be controlled	Contributing plasma measurement		
Plasma equilibrium	Magnetic configuration, kinetic measurements		
Separatrix to wall gap	Edge density profile		
Growth/control of instabilities	Fluctuations over frequency range $\sim 1 \text{ kHz} - 2 \text{ MHz}$		
Burn onset and control	Neutron flux and beta		
Plasma rotation profile	Toroidal rotation speed		
Fuel species, impurity density	Density measurements of D, T, H and low-Z and high-Z impurities		
Excess growth of helium in core	Helium density		
Fuel and fuel ratio control	Exhaust neutral densities		
Auxiliary power input performance	Many measurements to be determined		
Density control at start-up, auxiliary heating permissives	Density (probably profile)		

Issues: Same issue with beams but additional difficulty of measuring core helium. Difficult to gain spatial information about fluctuations.

Diagnostics and Control for DEMO

Diagnostics:

- survivability of windows in high radiation environment (ITER systems will only see <1dpa – DEMO up to 5-10 dpa per fpy);
- availability of lines-of-sight through blankets (spectroscopic and optically-based measurements of plasma temperature, density, current profile etc).
 - Improve survivability of major diagnostic systems
 - New diagnostic development for replacing standard diagnostic systems


Control systems:

- Inability of control coils to survive in-vessel radiation doses poor controllability/response time using coils placed far from plasma;
- Restriction of lines-of-sight, and limits to numbers of magnetic-coil measurements in-vessel (system complexity optimisation) → sparse dataset available → development of control algorithms based on sparse data.

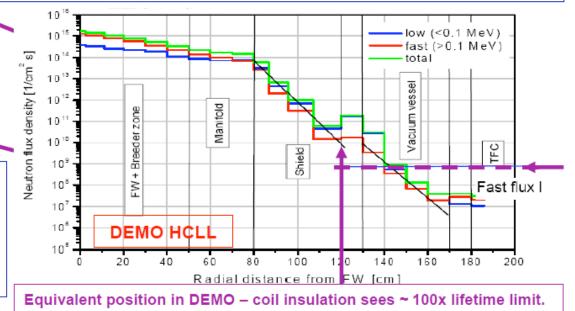
Develop control system with sparse data and remote actuators

ITER Diagnostics

- About 40 large scale diagnostic systems are foreseen:
 - Diagnostics required for protection, control and physics studies
 - Measurements from DC to γ -rays, neutrons, α -particles, plasma species
 - Diagnostic Neutral Beam for active spectroscopy (CXRS, MSE)

age 51

Diagnostics and Control for DEMO



ITER In-vessel coils for vertical stability/ELM control/Resistive Wall Mode control:

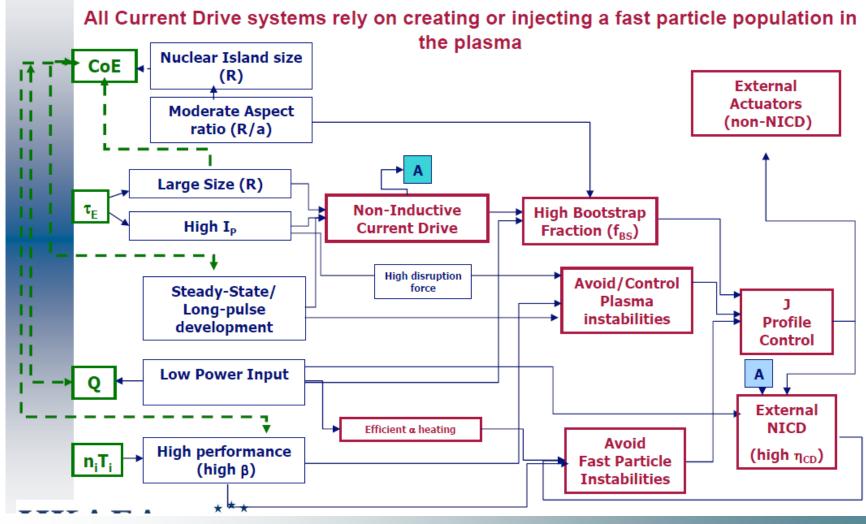
coils are behind the Blanket modules

ELMs (edge modes expelling particles and energy) are thermal pulses of 500μ s duration, the peak energy density must be < 0.5MJ.m⁻² to avoid excessive damage to walls and divertor.

In-vessel coils \rightarrow magnetic perturbations \rightarrow destabilise edge modes whilst still small \rightarrow small energy deposition

 Other fast response coils correct vertical instabilities

00


 ..ex-vessel stabilisation systems not fast enough

+ * +

Diagnostics and Control for DEMO

Current and Current Profile Relationships in a Reactor-sized experimental device

