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EU Gap Study for Fusion Power Plant
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Do we have sufficient tritium inventory?

Availability of External Tritium Supply for “startup” of ITER and early DT devices such as DEMO

 Current T inventory and annual production 
rates in Canada and Korea

 Based on the ITER DT operation plan

(2-shift pattern, 12/14 days,16/24 months)

 Average T consumption rate of 0.9 kg/yr

Global inventory of tritium predicted to be 
just sufficient to meet ITER’s needs

 What happen if more delay happens ?

Other DT devices need tritium self-sufficiency !
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Blanket: tritium breeding, heat exchange and shielding

 Breed tritium fuel (Lithium)

 TBR (Tritium Breeding Ratio) > 1

~50 kg/yr is required for 1,000 MWe

 Transfer thermal energy (Coolant)

 High blanket temperature 

for thermal conversion efficiency

 Contribute to shielding and energy multiplication

 it has the highest activation and after-heat (Structural material) 
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Key Blanket Element Materials

1. Tritium Breeding Material (Lithium in some forms)

Liquid: Li, LiPb (83Pb 17Li), lithium-containing molten salts

Solid: Li2O, Li4SiO4, Li2TiO3, Li2ZrO3

2. Neutron Multiplier (for most blanket concepts)

Beryllium (Be, Be12Ti)

Lead (in LiPb)

3. Coolant

– Li, LiPb – Molten Salt – Helium – Water

4. Structural Material

– Ferritic Steel (accepted worldwide as the reference for DEMO)

– Long-term: Vanadium alloy (compatible with Li) and SiC/SiC

Liquid metal,
Molten salt,
Ceramic

GEN IV Reactors

High-temperature, low activation
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Cross Sections of Breeder and Multiplier Materials
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Selection of Breeding Blanket Materials

TBR vs.  multiplier / breeder ratioApproximate TBR with no structure

May need multiplier or  6Li enrichment !
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Selection of Coolant

 Water

 simple, reliable, and inexpensive

 tritium removal, corrosion, compatibility (lithium ceramics, LiPb, or hot Be )

 Helium

 HTGR experience, nonradioactive

 easy tritium extraction, unaffected by B

 high pressure, high flow rates, high pumping power, many tubes and welds

 neutron streaming, impurities  corrosion, possible He shortage

 Liquid metals – pumping across B, fire

 Flowing Li2O – radiation stability, heat transfer, clogging

 Molten salts – chemical stability & corrosion
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Selection of Coolant

 Water

 simple, reliable, and inexpensive

 tritium removal, corrosion, compatibility (lithium ceramics, LiPb, or hot Be )

 Helium

 HTGR experience, nonradioactive

 easy tritium extraction, unaffected by B

 high pressure, high flow rates, high pumping power, many tubes and welds

 neutron streaming, impurities  corrosion, possible He shortage

 Liquid metals – pumping across B, fire

 Flowing Li2O – radiation stability, heat transfer, clogging

 Molten salts – chemical stability & corrosion
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Structural Materials Development for Fusion Reactors 



DEMO Structural Material Selection: RAFM Steels
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Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) consisting of 
a Fe-10Cr-1Mo system with Mn, V, Ni, Zr, Ti, and Y2O3 as minor elements

Advanced Reduced-Activation Alloy (ARAA) : KAERI
Ti-RAFM : KIMM
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Shielding Materials

Fast neutron fluence to coils      <  1019 /cm2

Nuclear heating in Nb3Sn coils <   2   mW/cm3

Dose to coil insulator                 <  1011     rad

Copper stabililzer

displacements per atom             <  6x10-3 dpa

(El-Guebaly FST 2008)

Shielding Requirements – ARIES CS
Radiation Limits, 40 full-power years Protect magnet coils

superconductor

copper stabilizer

insulation

 Reduce activation

 Protect people

 Neutrons and gammas

attenuation ~ 10-7

 WC  is used for both neutrons and gammas  
 ARIES CS: double-walled vacuum vessel 
(RAFM steel structure, borated steel filler, and water)
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Coolant Flow Configurations
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Coolant Channel Design Issues

 Temperature distribution

 Maximum coolant Tout

 Cool first wall

 Hot breeder for tritium removal

 Avoid hot spots

 Compatibility limits

 Pumping power 

 Stresses from gravity, pressure, temperature gradients

 Thermal expansion allowance

 Avoid creep, fatigue, corrosion
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Coolant Channel Design Issues

 Neutronics

 Low void fraction

 Small structure fraction

 Avoid long-lived radioisotope generation

 Avoid neutron streaming

 Tritium removal and inventory

 Materials 

 abundant, inexpensive, noncorrosive 

 easily fabricated & joined

 High reliability

 Easy maintenance
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Design Compromises

 High Tout good thermal conversion efficiency, 

but poor strength and compatibility. 

 Large coolant DT  lower flow rates and pumping powers, 

but exacerbates thermal stress. 

 High He pressures decrease the required velocities, 

but increase duct stresses. 

 Thin tubes have high hoop stresses, 

and thick tubes have high thermal stresses. 

 Large He tube diameters decrease the number of tubes and welds needed, 

but they increase hoop stress and neutron streaming . 



Concept studies on breeding blankets in the world
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ITER TBM Programs (2008)
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ITER TBM Program Status
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Equatorial Port #16:

Water-Cooled Lithium-Lead (WCLL)

Helium-Cooled Solid-Breeder (HCSB, 1st TBS)

Equatorial Port #18:

Water-Cooled Ceramic Breeder (WCCB)

Helium-Cooled Solid-Breeder (HCCB, 2nd TBS)

2018: TBM ports from Three to Two
Four models can be tested simultaneously

Reasonable proposal in this case may be



EU Blanket for DEMO
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EU Test Blanket Model
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KO Test Blanket Model
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KO TBM Development Progress
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