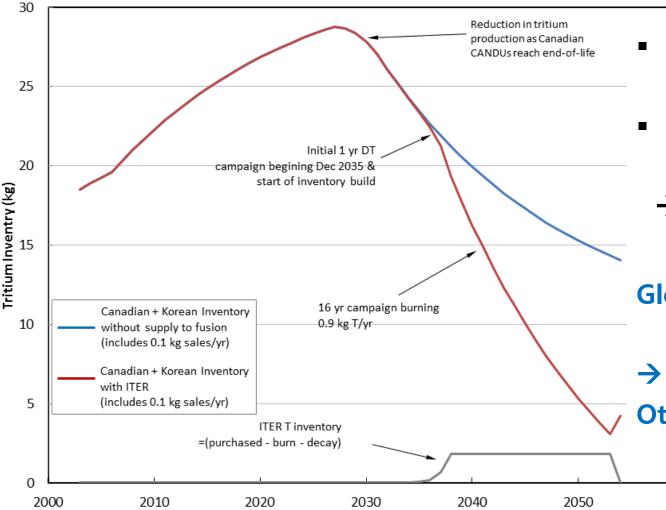
EU Gap Study for Fusion Power Plant

	Issue	Approved devices	ITER	IFMIF	DEMO Phase 1	DEMO Phase 2	Power Plant
	Disruption avoidance	2	3		R	R	R
Plasma	Steady-state operation	2	3		r	r	r
physics/	Divertor performance	1	3		R	R	R
Plasma	Burning plasma (Q>10)		3		R	R	R
performance	Start up	1	3		R	R	R
	Power plant plasma performance	1	3		r	R	R
	Superconducting machine	2	3		R	R	R
F 11	Tritium inventory control & processing	1	3		R	R	R
Enabling	Power plant diagnostics & control	1	2		r	R	R
technologies	Heating, current drive and fuelling	1	2		r	R	R
	Remote handling	1	2		R	R	R
Materials &	Materials characterisation			3	R	R	R
Component	Plasma-facing surface	1	2		3	4	R
Nuclear	Vessel/First Wall /blanket/divertor materials		1	1	3	4	R
performance	Vessel/ First Wall /blanket/divertor components		1	1	2	4	R
& lifetime	T self sufficiency		1		3	R	R
Eta al Caratara	Licensing for power plant	1	2	1	3	4	R
Final System	Electricity generation at high availability				1	3	R

Will help to resolve the issue May resolve the issue Should resolve the issue Must resolve the issue Inputs: r


Pre-existing Solution is desirable Pre-existing Solution is a requirement

UKAEA October 2007 (revised/improved version of original table in UKAEA FUS 521, 2005).

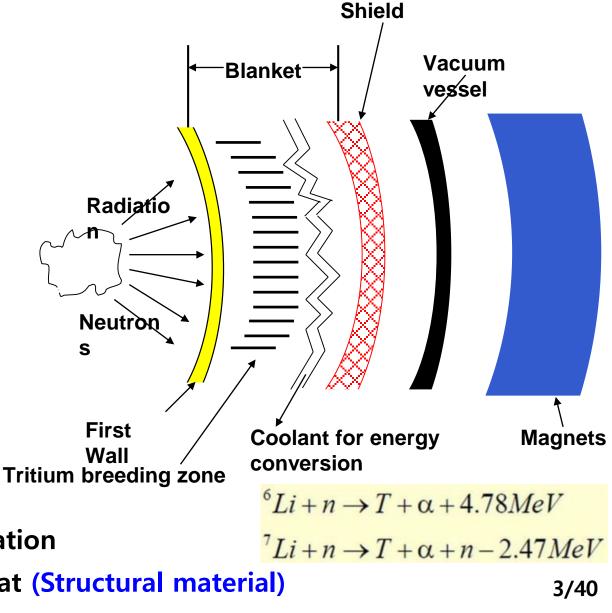
Do we have sufficient tritium inventory?

Availability of External Tritium Supply for "startup" of ITER and early DT devices such as DEMO

2060

- Current T inventory and annual production rates in Canada and Korea
- Based on the ITER DT operation plan
 (2-shift pattern, 12/14 days, 16/24 months)
 → Average T consumption rate of 0.9 kg/yr

Global inventory of tritium predicted to be just sufficient to meet ITER's needs


→ What happen if more delay happens ?
Other DT devices need tritium self-sufficiency !

Blanket: tritium breeding, heat exchange and shielding

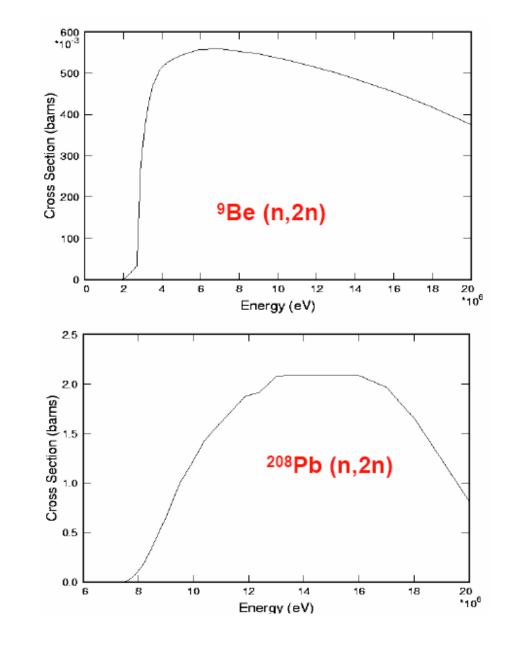
Li (breeder) $\leftarrow \rightarrow$ U (fuel)


Coolants

- Breed tritium fuel (Lithium)
 - TBR (Tritium Breeding Ratio) > 1
 ~50 kg/yr is required for 1,000 MWe
- Transfer thermal energy (Coolant)
- High blanket temperaturefor thermal conversion efficiency
- Contribute to shielding and energy multiplication
- it has the highest activation and after-heat (Structural material)

Key Blanket Element Materials

- Tritium Breeding Material (Lithium in some forms) Liquid: Li, LiPb (⁸³Pb ¹⁷Li), lithium-containing molten salts Solid: Li₂O, Li₄SiO₄, Li₂TiO₃, Li₂ZrO₃
- Neutron Multiplier (for most blanket concepts) Beryllium (Be, Be₁₂Ti) Lead (in LiPb)
- 3. Coolant
 - Li, LiPb Molten Salt Helium Water
- 4. Structural Material \implies High-temperature, low activation
 - Ferritic Steel (accepted worldwide as the reference for DEMO)
 - Long-term: Vanadium alloy (compatible with Li) and SiC/SiC

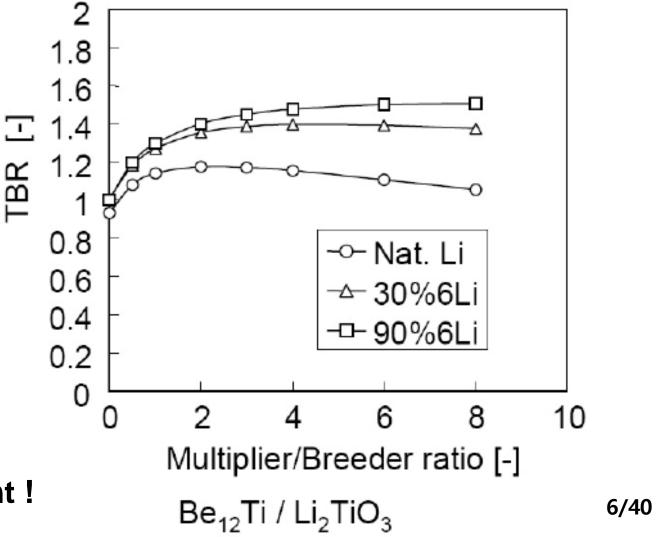


GEN IV Reactors

Cross Sections of Breeder and Multiplier Materials

Tritium Production Cross-Section (barns)

5/40


Selection of Breeding Blanket Materials

Approximate TBR with no structure

TBR vs. multiplier / breeder ratio

LiAIO ₂	1.0
Li ₂ TiO ₃	1.0
Li ₂ ZrO ₃	1.0
Li ₄ SiO ₄	1.0
Li ₂ O	1.4
Flibe	1.1
Flibe 90% ⁶ L 1.3	
PbLi17	1.4
PbLi17 90% ⁶ Li	1.7
Li	1.8

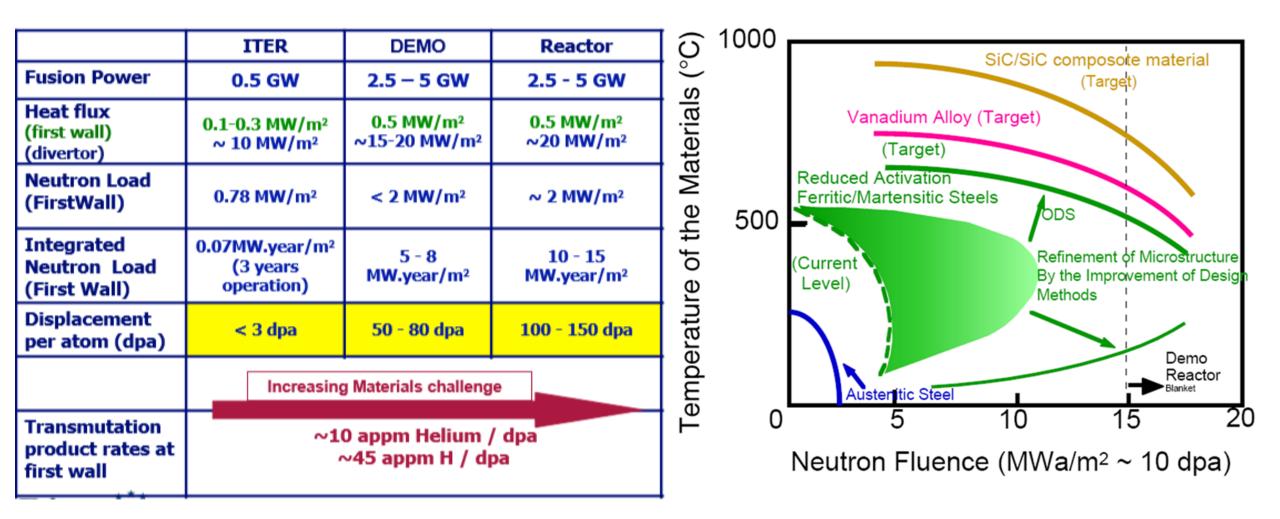
May need multiplier or ⁶Li enrichment !

Selection of Coolant

Water

- ✓ simple, reliable, and inexpensive
- ✓ tritium removal, corrosion, compatibility (lithium ceramics, LiPb, or hot Be)

Helium


- ✓ HTGR experience, nonradioactive
- ✓ easy tritium extraction, unaffected by B
- \checkmark high pressure, high flow rates, high pumping power, many tubes and welds
- \checkmark neutron streaming, impurities \rightarrow corrosion, possible He shortage
- Liquid metals pumping across B, fire
- Flowing Li2O radiation stability, heat transfer, clogging
- Molten salts chemical stability & corrosion

Selection of Coolant

Water

- ✓ simple, reliable, and inexpensive
- ✓ tritium removal, corrosion, compatibility (lithium ceramics, LiPb, or hot Be)
- Helium
 - ✓ HTGR experience, nonradioactive
 - ✓ easy tritium extraction, unaffected by B
 - \checkmark high pressure, high flow rates, high pumping power, many tubes and welds
 - \checkmark neutron streaming, impurities \rightarrow corrosion, possible He shortage
- Liquid metals pumping across B, fire
- Flowing Li2O radiation stability, heat transfer, clogging
- Molten salts chemical stability & corrosion

Structural Materials Development for Fusion Reactors

DEMO Structural Material Selection: RAFM Steels

For the experimental 'Reduced Activation Ferritic Martensitic' steels: -→Ta replaces Nb,

→ V replaces Ti

 \rightarrow Cr replaces Mn ... up to a point... nothing much replaces Mo.

F82H (Japan): Fe - 7.7%Cr – 2%W - 0.2%V - 0.04%Ta - 0.09%C Eurofer (EU): Fe - 8.9%Cr – 1%W - 0.2%V - 0.14%Ta - 0.12%C

There are also "Oxide Dispersion Strengthened" (ODS) variants -Nanoscale Y₂O₃ particles:

■act as He, H sinks and improve defect rate,

■strengthen,

■reduce creep.

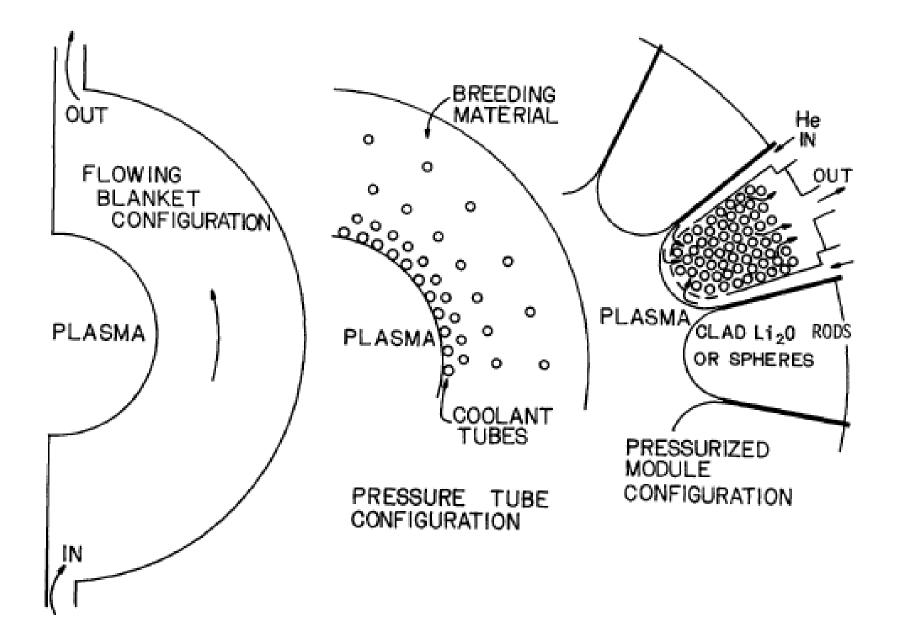
Currently only small experimental batches made

Advanced Reduced-Activation Alloy (ARAA) : KAERI Ti-RAFM : KIMM

Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) consisting of a Fe-10Cr-1Mo system with Mn, V, Ni, Zr, Ti, and Y2O3 as minor elements

Shielding Materials

- Protect magnet coils superconductor copper stabilizer insulation
- Reduce activation
- Protect people
- Neutrons and gammas attenuation ~ 10⁻⁷


Shielding Requirements – ARIES CS Radiation Limits, 40 full-power years

Fast neutron fluence to coils	< 10 ¹⁹ /cm ²
Nuclear heating in Nb ₃ Sn coils	< 2 mW/cm ³
Dose to coil insulator	< 10 ¹¹ rad
Copper stabililzer displacements per atom	< 6x10 ⁻³ dpa
(El-Gu	ebaly FST 2008)

WC is used for both neutrons and gammas

ARIES CS: double-walled vacuum vessel
 (RAFM steel structure, borated steel filler, and water)

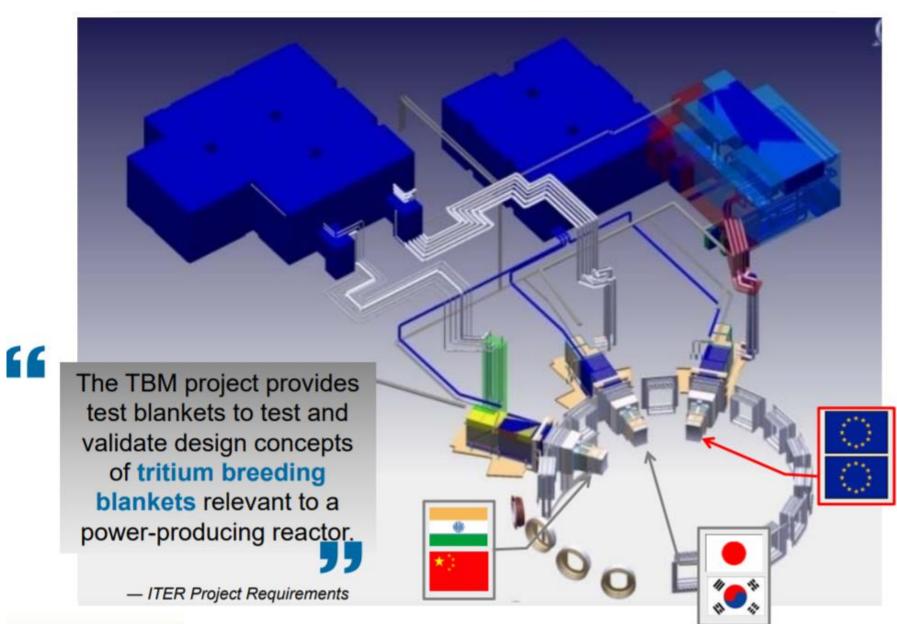
Coolant Flow Configurations

Coolant Channel Design Issues

- Temperature distribution
 - ✓ Maximum coolant T_{out}
 - ✓ Cool first wall
 - ✓ Hot breeder for tritium removal
 - ✓ Avoid hot spots
 - ✓ Compatibility limits
- Pumping power
- Stresses from gravity, pressure, temperature gradients
- Thermal expansion allowance
- Avoid creep, fatigue, corrosion

Coolant Channel Design Issues

- Neutronics
 - ✓ Low void fraction
 - ✓ Small structure fraction
 - ✓ Avoid long-lived radioisotope generation
 - ✓ Avoid neutron streaming
- Tritium removal and inventory
- Materials
 - ✓ abundant, inexpensive, noncorrosive
 - ✓ easily fabricated & joined
- High reliability
- Easy maintenance


Design Compromises

- High T_{out} good thermal conversion efficiency, but poor strength and compatibility.
- Large coolant ∆T → lower flow rates and pumping powers, but exacerbates thermal stress.
- High He pressures decrease the required velocities, but increase duct stresses.
- Thin tubes have high hoop stresses, and thick tubes have high thermal stresses.
- Large He tube diameters decrease the number of tubes and welds needed, but they increase hoop stress and neutron streaming.

Concept studies on breeding blankets in the world

Blanket type	WCLL	HCLL	HCCB	WCCB	LLCB	DCLL	Molten Salt	Li-V	HCCB	SCLL	Li Evap.
Structural material	RAFM	RAFM	RAFM	RAFM	RAFM	RAFM + ODS	Ferritic Steel	V alloy (+ insulation)	SiCf/SiC	SiCf/SiC	W alloy
Breeder	Pb-16Li (liquid)	Pb-16Li (Liquid)	Li ₄ SiO ₄ , Li ₂ TiO ₃ (pebbles)	Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid) + Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid)	FLiBe (liquid)	Li (nat.)	Li ₂ TiO ₃ , Li ₂ O (pebbles)	Pb-16Li (liquid)	Li (nat.)
Neutron Multiplier			Be (pebbles)	Be (pebbles)			Be (pebbles)		Be (pebbles)		
Coolant	H₂O (15 MPa)	He (8 MPa)	He (8 MPa)	Supercritica I H ₂ O (25 MPa)	He (8 MPa)	He (8 MPa) + Pb-16Li	FLiBe (liquid)	Li (nat.)	He (10 MPa)	Pb-16Li	Li (nat.) evap.
T coolant	265 - 325	300 - 500	300 - 500	290 - 520	325 - 500	300 - 480 (He) 460 - 700 (PbLi)	450 - 550	330 - 610	600 - 900	765 - 1100	1100 - 1200
T Structural material	265 - 550	300 - 550	300 - 550	290 - 550	300 - 550	300 - 550	max. 550	330 - 700	700 - 1150	765 - 1000	max. 1300
Reactor concept studies	PPCS-A	PPCS-AB	PPCS-B	SSTR	DEMO-S	ARIES-ST APEX PPCS-C	FFHR-2	ARIES-RS	DREAM A-SSTR2	ARIES-AT TAURO	APEX- EVOLVE
& R&D	0	• •	•		٠	0	•	•	•	ं	
			:•:			•3			From	n V. Poitevin	ot al (2015)

ITER TBM Programs (2008)

ITER TBM Program Status

_

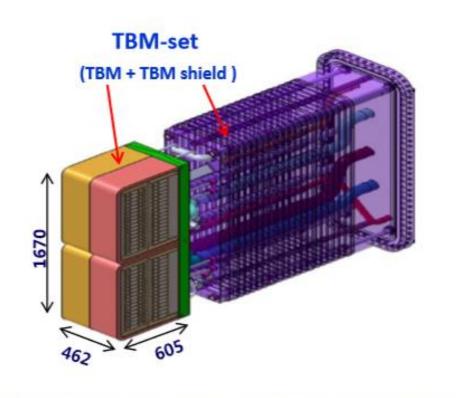
_

Blanket type	WCLL	HCLL	НССВ	WCCB	LLCB	Port No. (PM)	TBM Leader 1 (TL)	TBM Leader 2 (TL)	
Structural material	RAFM	RAFM	RAFM	RAFM	RAFM	16 (PM : EU)	HCLL (EU) (Helium Cooled Lithium Lead)	HCPB (EU) (Helium Cooled Pebble Bed)	
Presiden	Pb-16Li	Pb-16Li	Li ₄ SiO ₄ ,	Li ₂ TiO ₃	Pb-16Li (liquid)	18 (PM : JA)	WCCB (JA) (Water Cooled Ceramic Breeder)	HCCR (KO) (Helium Cooled Ceramic Reflector)	
Breeder	(liquid)	(Liquid)	Li ₂ TiO ₃ (pebbles)	(pebbles)	+ Li ₂ TiO ₃ (pebbles)	2 (PM : CN)	HCCB (CN) (Helium Cooled Ceramic Breeder)	LLCB (IN) (Lithium Lead Ceramic Breeder)	
Neutron Multiplier			Be (pebbles)	Be (pebbles)		-			
Coolant	H ₂ O (15 MPa)	He (8 MPa)	He (8 MPa)	Supercritica I H ₂ O (25 MPa)	He (8 MPa)	2018: TBM ports from Three to Two Four models can be tested simultaneously			
T coolant	265 - 325	300 - 500	300 - 500	290 - 520	325 - 500	Reasonable proposal in this case may be			
T Structural material	265 - <u>5</u> 50	300 - 550	300 - 550	29 <mark>0 - 5</mark> 50	300 - 550	Equatorial Port #16: Water-Cooled Lithium-Lead (WCLL) Helium-Cooled Solid-Breeder (HCSB, 1st TBS)			
TBM Leaders		0	ा । :::	•	-	Equatorial Port #18: Water-Cooled Ceramic Breeder (WCCB) Helium-Cooled Solid-Breeder (HCCB, 2nd TBS)			

EU Blanket for DEMO

0		Model A	Model B	Model AB	Model C	Model D
	Structural material	Eurofer	Eurofer	Eurofer	Eurofer	SiC/SiC
	Coolant	Water	Helium	Helium	LiPb/He	LiPb
blanket	Coolant T in/out (°C)	285 / 325	300 / 500	300 / 500	480 / 700 300 / 480	700 / 1100
D	Breeder	LiPb	Li ₄ SiO ₄	LiPb	LiPb	LiPb
	TBR	1.06	1.12	1.13	1.15	1.12
L	Structural material	CuCrZr	W alloy	W alloy	W alloy	SiC/SiC
divertor	Armour material	W	W	W	W	W
div	Coolant	Water	Helium	Helium	Helium	LiPb
	Coolant T in/out (°C)	140 / 170	540 / 720	540 / 720	540 / 720	600 / 990

EU Test Blanket Model



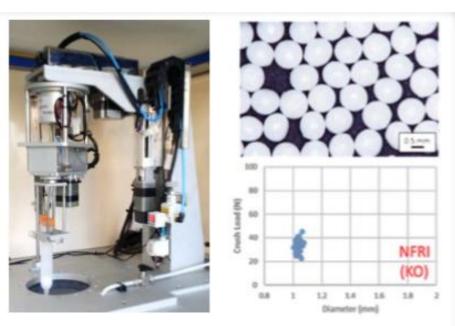
KO Test Blanket Model

 KO Helium Cooled Ceramic Reflector (HCCR) TBM (DEMO-relevant breeding breeder concept)

Parameter	Values					
FW heat flux	0.3 MW/m ²					
Neutron wall load	0.78 MW/m ²					
Thermal Power	0.98 MW					
Structural material	KO-RAFM (ARAA) (< 550°C), 0.01% Zr Improved creep and impact resistances					
Breeder	Li ₂ TiO ₃ (< 920°C), 80 kg 70% enrichment Li-6					
Multiplier	Be (< 650°C)					
Reflector	Graphite (<1200°C) Reduce the Be Multiplier up to 50%					
Size	1670(P) x 462(T) x 605(R) (mm)					
Coolant	8 MPa He, 1.14 kg/s (Nominal) 300°C inlet / 500°C outlet					
Purge gas	He with 0.1 % H ₂					
TBM-shield	316L(N)-IG Block/Cooling Channels ITER FW/BLK-PHTS (40°C, 4 MPa)					

ARAA (Advanced Reduced Activation Alloy) Product

KO TBM Development Progress


Mass production of Ceramic Pebble Breeder

- Li₂TiO₃ Pebble (dia. ~ 1 mm)
- Relative Density of Pebble : 85%
- Capacity of Mass Production Equipment : 50 kg/y

HeSS (Helium Cooling Supply System)

- Evaluation of component lifetime
- Build-up know-how for ITER TBM operation
- Evaluation Test loop built for circulator

Purge gas loop (Full Scale) under building-up

