7. Integrated DEMO design and system development?

System design and integration? Modelling and simulation

Divertor: Heat Removal

Blanket → Breeding Blanket, Heat exchange

• Heating & Current Drive Systems

Difference between ITER and DEMO

ITER

DEMO

- Experimental device with physics and technology development missions.
- 400 s pulses, long dwell time.
- Experimental campaigns. Outages for maintenance, component replacements.
- Large number of diagnostics.
- Multiple H&CD systems.
- Large design margins, necessitated by uncertainties and lack of fully appropriate design codes.
- Cooling system optimized for minimum stresses and sized for modest heat rejection.
- Unique one-off design optimized for experimental goals.
- No tritium breeding requirement (except very small quantity in tritium breeding modules).
- Conventional 316 stainless steel structure for in-vessel components.
- Very modest lifetime n-fluence, low dpa and He production.
- Licensed as nuclear facility, but like a laboratory, not a reactor.
- Licensing as experimental facility.
- 'Progressive start-up' permits staged approach to licensing.
- During design, licensing in any ITER party had to be possible.

- Nearer to a commercial power plant but with some development missions.
- Long pulses (>2h) or steady state.
- Maximize availability. Demonstrate effective and efficient maintenance and component replacement technologies.
- Typically, only those diagnostics required for operation. However, there may be the need to have diagnostics for component testing and qualification
- Optimized set of H&CD systems.
- With ITER (and other) experience, design should have smaller uncertainties.
- Cooling system optimized for electricity generation efficiency (e.g. much higher temperature.)
- Move towards design choices suitable for series production.
- Tritium breeding needed to achieve self-sufficiency.
- Nuclear hardened, novel reduced activation materials as structure for breeding blanket.
- High fluence, significant in-vessel materials damage.
- Licensing as nuclear reactor more likely. Potential for large tritium inventory on-site.
- Stricter approach may be necessary to avoid large design margins.
- 'Progressive start-up' should also be possible (e.g. utilize a 'starter' blanket using moderate-performance materials and then switch to blankets with a more advanced-performance material after a few MW yr/m²).
- · Fewer constraints.

G. Federici et. als., "European DEMO design strategy and consequences for materials", Nuclear Fusion 57 (2017) 092002

DEMO Power Plant Schematic

DEMO Physics and Engineering Parameters

DEMO Design Features and Key Parameters

Main design features

- $-\,2000$ MWth ~ 500 MW_e
- Pulses > 2 h
- Single-null water cooled divertor; PFC armour: W
- LTSC magnets Nb3Sn (grading)
- $-B_{max}$ conductor ~12 T (depends on A)
- EUROFER as blanket structure and AISI ITER-grade
 316 for VV
- Maintenance: Blanket vertical RH / divertor cassettes
- Lifetime: 'starter' blanket: 20 dpa (200 appm He); 2nd blanket 50 dpa; divertor: 5 dpa (Cu)

Open design choices

- Plasma operating scenario
- Breeding blanket design concept
- Protection strategy first wall (e.g. limiters)
- Advanced divertor configurations and/or technologies
- Energy conversion system
- Specific safety features, e.g. # of PHTS cooling loops
- -Diagnostics and control systems

	ITER	DEMO1	DEMO2
		(2015) A=3.1	(2015)A=2.6
R ₀ /a (m)	6.2 / 2.0	9.1 / 2.9	7.5 / 2.9
K_{95}/δ_{95}	1.7 / 0.33	1.6 / 0.33	1.8 / 0.33
$A (m^2)/Vol (m^3)$	683 / 831	1428 / 2502	1253 / 2217
H / β_N (%)	1.0 / 2.0	1.0 / 2.6	1.2 / 3.8
P _{sep} (MW)	104	154	150
$P_F(MW) / P_{NET}$	500 / 0	2037 / 500	3255 / 953
(MW)			
I _p (MA) / f _{bs}	15 / 0.24	20 / 0.35	22 / 0.61
B at $R_0(T)$	5.3	5.7	5.6
B _{max} , (T)	11.8	12.3	15.6
BB i/b / o/b (m)	0.45/0.45	1.1 / 2.1	1.0 / 1.9
<nwl>MW/m²</nwl>	0.5	1.1	1.9

ARIES Studies in US

• Directly tied to advances in physics and Technology

Estimated Cost of Electricity (¢/kWh)

Major radius (m)

ARIES-AT parameters (based on ASC systems analysis):

Major radius:	5.2 m	Fusion Power	1,720 MW
Toroidal β:	9.2%	Net Electric	1,000 MW
Wall Loading:	4.75 MW/m ²	COE	5.5 ¢/kWh

ARIES System Code (ASC)

PPCS in EU

PPCS (Power Plant Conceptual Study) based on PROCESS systems analysis

Parameter	Model A	Model AB	Model B	Model C	Model D	ITER
Blanket/cooling technology	WCLL	HCLL	НСРВ	LL dual coolant	LL self cooled	-
Fusion Power (GW)	5.00	4.30	3.60	3.41	2.53	0.5
Plant net efficiency ¹	0.31/0.33 ²	0.35	0.36	0.42	0.60	E
Major Radius (m)	9.55	9.56	8.6	7.5	6.1	<u>6.2</u>
Plasma Current (MA)	30.5	30.0	28.0	20.1	14.1	15
β_N (thermal, total)	2.8, 3.5	2.7, 3.5	2.7, 3.4	3.4, 4.0	3.7, 4.5	2.5
H _H (IPB98y2)	1.2	1.2	1.2	1.3	1.2	1.0
Bootstrap Fraction	0.45	0.43	0.43	0.63	0.76	0.15
P _{add} (MW)	246	257	270	112	71	73
n/n _G	1.2	1.2	1.2	1.5	1.5	1.0
Q	20	16.5	13.5	30	35	10
Average neutron wall load (MWm ⁻²)	2.2	1.8	2.0	2.2	2.4	0.5
Z _{eff}	2.5	2.6	2.7	2.2	1.6	2

요소기술: Near COE: 9 €-c

Near 9 €-cents/kWh Far 5 €-cents/kWh

Input parameters

	VEST	KSTAR	ITER	K-DEMO	EU DEMO1
R [m]	0.4	1.8	6.2	6.8	9.0
a [m]	0.31	0.5	2.0	2.1	2.9
elongation, κ	1.8	2.0	1.7	1.8	1.6
triangularity, δ	0.2	0.8	0.33	0.63	0.33
I _p [MA]	0.10	2.0	15.0	12.0	20.0
В _о [Т]	0.1	3.5	5.3	7.4	5.9
P _H [MW]	0.100	28.0	73.0	120.0	50.0
β _N	4.0	5.0	1.8	4.0	2.6
l _i	0.6	0.7	1.0	1.0	1.0
Z _{eff}	4.0	2.0	1.7	1.5	1.5

Plasma performance with operational limits

Tryon beta limit

$$\beta[\%] = \beta_{N} l_{i} I_{P}[MA] / a[m] B_{o}[T] = 2nkT = \beta (B_{o}^{2}/2\mu_{o}) = 2nkT = \beta (B_{o}^{2}/2\mu_{o}) W_{th} = <1.5p > V W_{th} = <1.5p > V KT[keV] = \frac{/2}{16.09n[10^{20}m^{-3}]} = I_{P}[MA] / \pi a[m]^{2}$$
 $n[10^{20}m^{-3}] = n_{G} n_{G,lim}$

Plasma power balance

Fusion power and alpha heating $P_f = N_D N_T (B^4 / 16\mu_o^2) \beta^2 E_f <\sigma v > /k^2 T^2$ $P_{\alpha} = P_f / 5$ $P_{\Omega} = \eta \left\langle j^2 \right\rangle = 1.0 \times 10^5 \left(\frac{Z_{eff}}{T^{3/2}} \right) \left| \frac{1}{q_o(q_o - q_o/2)} \left| \left(\frac{B_{\phi}}{R} \right)^2 \right| \right|$ $q_o = 2B_{\varphi} / (\mu_o j_o R)$ $q_{cvl} = 2\pi a^2 \kappa B_{\omega} / (\mu_o I R)$ $q_{\psi} \approx \left(\frac{5a^2 B_{TF}}{RI}\right) \left(\frac{1+\kappa^2}{2}\right) \left(\frac{A}{A-1}\right)$ $q_{95} = \frac{2\pi}{\mu_0} \frac{B_t a^2}{RI_p} \frac{1.17 - \frac{0.65}{A}}{\left(1 - \frac{1}{\Lambda^2}\right)^2}$ $\times \frac{1 + \kappa_{95}^2 (1 + 2\delta_{95}^2 - 1.2\delta_{95}^3)}{2}$

T. J. Dolan, Fusion Research, Pergamon Press, 2000

$$\frac{\langle \sigma V \rangle_{DT}}{(kT_{i})^{2}} \approx 4.1 \times 10^{7} \text{ m}^{3}/\text{J}^{2}-\text{s} \qquad (\pm 15\% \text{ for } 8 \leq T_{i} \leq 25 \text{ keV})$$

$$\frac{4}{37} \times 10^{7} \qquad \pm 6 \leq f_{0r} 9 < T_{i} < 20 \qquad (2010)$$

$$\frac{\langle \sigma V \rangle_{DD}}{(kT_{i})^{2}} \approx 4.0 \times 10^{5} (\frac{30 \text{ keV}}{T_{i}})^{\frac{1}{2}} \text{ m}^{3}/\text{J}^{2}-\text{s} \qquad (\pm 10\% \text{ for } 15 \leq T_{i} \leq 70 \text{ keV})$$

$$(2011)$$

Plasma power balance

Radiation losses $P_{rad} = P_{br} + P_{IR} + P_{sync}$

 $P_{br} = 5.36 \times 10^{-37} Z^2 n_e n_z T_e^{1/2} V = 5.36 \times 10^{-37} Z_{eff} n_e^2 T_e^{1/2} V$

 $P_{IR} = n_I n_e R(T_e)$ * Impurity radiation model, ADAS code 와 연계 $\approx n_e^2 S(Z_{eff} - 1)/7$ G.F. Matthews et al., Nucl. Fusion 39, 19 (1999)

 $P_{sync} = (1-r)^{1/2} B^2 n_e T_e V \quad \text{* Trubnikov, B.A., in Reviews of Plasma Physics (Leontovich, M.A., Ed.), Vol. 7, (1979) 345.}$ $P_{syn} = 1.32 \times 10^{-7} (BT_{ave})^{2.5} \sqrt{\frac{An_e}{R}} \left(1 + \frac{18}{A\sqrt{T_{ave}}}\right) V \quad \text{H. Zohm et al., Nucl. Fusion 57, 086002 (2017)}$ H. Zohm, Journal of Fusion Energy 38, 3-10(2019)

Power balance

$$P_{\alpha} + P_{H} = P_{loss} = P_{con} + P_{rad}$$
 $P_{con} = \langle Wth \rangle / \tau_{E}$ Energy confinement time

Plasma confinement and additional heating

$$P_{con} = \langle Wth \rangle / \tau_E$$

Ohmic confinement

 $\tau_E = (n/10^{20})a^2/2$ Alcator scaling

 τ_{nA} (ms) = 0.09 $n_e q \sqrt{\kappa} a R^2$ neo-Alcator scaling

L-mode confinement

 τ_{89P-L} (ms) = 48 l^{0.85} R^{1.2} a^{0.3} $\kappa^{0.5}$ B^{0.2} A^{0.5} $n_e^{-0.1}$ P^{-0.5} ITER 89P-L scaling

H-mode confinement

$$\tau_{Eth}^{ELMy} = 0.0562 I_{p}^{0.93} B^{0.15} P^{-0.69} n^{0.41} A_{i}^{0.19} R^{1.97} \varepsilon^{0.58} \kappa^{0.78} (s, MA, 10^{19} m^{-3})$$

$$\tau_{E} \equiv \langle Wth \rangle / P_{con} = \tau_{Eth}^{ELMy} H$$
$$P_{con} = \langle Wth \rangle / P_{con} = \tau_{Eth}^{ELMy} H$$

* P in scaling law is defined differently in various system codes.

Additionally required heating

$$P_H = P_{con} + P_{rad} - P_{\alpha}$$

Ex) PROCESS : "loss power" P_L , which we interpret as power transported out from the "core" by charged particles

$$P_L = P_H + P_{OH} + P_\alpha - P_{rad}$$

$$P_{loss} = P_{\alpha} + P_{ohmic} + P_{aux} - P_{brem} - P_{cycl} - P_{line}/3$$

Inductive Start-up

Flux consumptions during start-up

