Tokamak Plasma Control

Can we sustain fusion reactor condition stably?

- Tokamak plasma control categories Discharge control: Start-up and shape (equilibrium with magnetics) Discharge kinetic control (transport and confinement, particle and power handling) Advanced discharge control (stability, ELM and disruption)

Tokamak Plasma Control

Selected ITER control functions

TABLE I. Summary of selected control functions in ITER, along with principal control goals and actuators. (PF=poloidal field, CS=central solenoid, VS3=vertical stability coil circuit #3, NBI=neutral beam injection, ICRH=ion cyclotron resonant heating, RMP=resonant magnetic perturbation, ECH/ ECCD=electron cyclotron heating/current drive, EFC=error field correction).

Control Category	Principal Control Goals/Control Quantities	Actuators
Plasma equilibrium	Boundary, position	PF coils
	Divertor magnetic configuration	
Plasma current	Magnitude of plasma current	CS coils
	Internal inductance	
Vertical stability	Vertical stabilization	PF coils, in-vessel VS3 coils
	Vertical position (partial)	
Kinetics	Core electron density	Fueling pellets, gas, NBI, ICRH
	Stored energy/beta	
Burn state	Fusion gain	Fueling pellets, gas, NBI, ICRH, in-vessel RMP coils
	Fusion alpha power	
	Confinement	
Divertor	Target heat flux	Impurity gas injection, fueling
	Divertor radiation	USA (8036) (8 - 7)
	Degree of detachment, electron temp.	
Current profile	Internal inductance	CS coils, ECH/ECCD
	Q profile	
	Proximity to MHD control boundaries	
ELM control	ELM frequency, amplitude	RMP coils, pacing pellets
	ELM stability	
Sawtooth control	Sawtooth stability	ECH, ICRH
	Sawtooth frequency	
TM control	TM stability	ECH/ECCD, in-vessel RMP
	TM island size	coils, NBI, ICRH, EFC coils
	Mode rotation	
Fast particles	Stabilize Alfven Eigenmodes	ECH/ECCD, ICRH, NBI, in-vessel RMP coils
	Regulate fast particle confinement	
Error field	Error field correction	Error field correction coils, in-vessel RMP coils
	Rotation	
Disruption mitigation	Rapid uncontrolled shutdown	CS/PF coils, VS3 coils, Disruption Mitigation System
	Mitigate disruption effects	(impurity gas, shattered pellet injection)

Physics of Plasmas 22, 021806 (2015)

A significant amount of control physics understanding remains in order to complete such a robust ITER solution. Examples include:

- Identification of key profile characteristics determining TM stability
- Size of effective TM seeds produced by disturbances such as sawteeth and ELMs
- Quantification of controllability/robustness metrics corresponding to seedless TM triggering
- Effective control methods for burn control
- Sufficient look-ahead predictive capability for profile evolution using real-time data
- Reliable real-time calculation of proximity to stability and controllability boundaries
- Physics-based models for many relevant control functions, including noise, disturbance, and robustness specifications
- Scenarios for exception handling response to minimize or prevent disruptions

Discharge Start-up Control

Nucl. Fusion 39, 2577 (1999)

Discharge Shape Control

Nucl. Fusion 39, 2577 (1999)

Discharge Kinetic Control

Nucl. Fusion 39, 2577 (1999)

Table 2. ITER plasma kinetics control specifications ¹							
Plasma kinetic attribute	Nominal (for ignited or high- Q burn)	Control accuracy (%) (variance during normal operation)	Maximum or minimum				
Density (10^{20} m^{-3})	0.7 - 1.0	$\pm 10\%$	$\leq 1.3 (\cong 1.5 n_{GW})$				
Fusion power (GW)	1.0 - 1.5	$\pm 10\%$	${\leq}1.8~({\rm for}~10~{\rm s})$				
Edge/separatrix power (MW)	$\geq 120 \; (= 1.2 P_{L-H})$	±20% (?)	≥ 120 (?)				
Divertor power (to target) (MW)	≤ 50	±20% (?)	≤ 100 (steady state) ≤ 200 (for ~ 3 s)				
Auxiliary power (MW)	0 (ignited); 0–100 (high- Q driven burn); e.g. 100 MW at $Q = 15$	0–100 MW as required (dynamic P_{fus} control in ignited plasmas or sup- plemental P_{fus} control in driven burn plasmas)	≤ 100				

¹Representative parameters for B = 5.7 T, I = 21 MA, ELMy H-mode energy confinement, ~9% thermal He, 0.2% Ar, 'most likely' L–H power threshold ($\alpha = 0$, see Section 4.3 of Chapter 2).

Discharge Advanced Control

ELM Suppression and Mitigation

Disruption

Nuclear Fusion **39**, No. 12 (1999)

Disruption Causes and Classes in JET

18.715.6

10.0 9.6

8.2

6.0 5.9 5.6 5.1

4.6 2.4

8.2

Type of technical problem	Label			Nucl. Fusion	51 , 05	53018 (20)	11)
Impurity control problem Influx of impurities Density control problem	IMC IMP NC				ļ	X	,
Too much gas from gas injection module No (effective) pumped divertor	GIM DIV			JET disruption classes			%
Shape control problem Plasma too close to the wall High recycling Other real-time control problem Emergency shut-down Manual emergency stop by operator	SC WAL RCY RTC STOP SL	Type of physics problem General (rotating) $n = 1$ or 2 MHD Mode lock	Label MHD MI	Impurity (control problems) Density control problems Auxiliary power shut-down (H–L) Fast emergency shut-down	IMC NC ASD FSD	0.04–0.8 s 0.1->2 s	18 15 10 9
Wrong validated density for feedback Magnetic signal(s) error Reciprocating probe Na influx by lithium beam diagnostic Other diagnostic problem	PDV MAG PRO LIB DIA	Low q or $q_{95} \sim 2$ Edge q close to rational (>2) Large sawtooth crash Neo-classical tearing mode	LOQ QED SAW NTM	Neo-classical tearing mode Shape control problems Current ramp-up (Low density) error field mode	NTM SC IPR EFM	0.1 -> 2 s 0.1 -1 s	8 6 5 5
Too little auxiliary power Too little torque/rotation Problem with neutral beam injection Impurity release due to LHCD Impurities from ICRH antennae	AUX ROT NBI LHC ICH	Internal kink mode Reconnection Radiative collapse ($P_{rad} > P_{in}$) MARFE	KNK REC RC MAR	Strong internal transport barrier Vertical stability control problem Greenwald limit	ITB VSC GWL	0.01–0.05 s 0.02–0.1 s 0.05–0.8 s	5 4 2
Problem with vertical stability control (Intentional) vertical kink Temperature too high in VS amplifier Over-current in VS amplifier Other failure of VS amplifier	VS VSK VST VSI VSA	Greenwald limit (n_{GW}) High density operation (near n_{GW}) Too low density (and low q) H-to-L back-transition	GWL HD LON HL				
Human error Too fast a current ramp-up Other power supply problem Unidentified impurity influx (flying object) Problems due to pellet injection Impurity influx by laser ablation No clear cause	HUM IP PS UFO PEL ABL NON	Strong density peaking Too strong internal transport barrier (ITB) Strong pressure profile peaking Negative central magnetic shear Large edge localized mode (ELM) Vertical displacement event	NPK ITB PRP MSH ELM VDE				

Two Major Causes of Disruptions

- Low-q disruptions (LOQ, QED)
- Density limit disruptions (LON, GWL, RC, MAR, HD)

Greenwald density limit $n_{GW}(10^{20} \text{ m}^{-3})=I(MA)/a^2(m)$

Troyon normalized beta $\beta_N = <\beta(\%) > I(MA)/a(m)B(T)$

(q_{ψ} ≈2, n/n_{GW} ≈1 and β _N ≈3.5)

Two Major Disruptions from non-linear evolution of ideal MHD

- Disruption by long wavelength, non-axisymmetric MHD instabilities
 - > Various onset causes may be initiated
 - > thermal energy is lost first in the thermal quench phase
 - current density profile flattens
 - > internal inductance is reduced resultantly
 - > total plasma current increases
 - > current quench occurs from the cold plasma
- Vertical Displacement Events (VDE)
 - > the plasma moves vertically to strike the material wall
 - thermal quench occurs followed by a current quench without an increase in the current

Schematic Sequence of Disruption Events

Unintentional disruptions

- VS \rightarrow VDE
- ... \rightarrow MAR/RC \rightarrow MHD \rightarrow ML (\rightarrow VDE)
- ... \rightarrow LON/LOQ/QED/REC \rightarrow MHD \rightarrow ML
- SAW/ELM \rightarrow NTM (\rightarrow ROT) \rightarrow ML
- ITB \rightarrow PRP \rightarrow KNK \rightarrow ML

Intentional disruptions

- VS \rightarrow VDE (\rightarrow MHD \rightarrow ML)
- NC (GIM) \rightarrow MAR/RC \rightarrow MHD \rightarrow ML
- IMC/MGI \rightarrow IMP \rightarrow RC \rightarrow MHD \rightarrow ML

• LOQ \rightarrow MHD \rightarrow ML

Disruption Prediction

Neural network disruption prediction in DIII-D

True positive rate

0.4

'Prediction' of a beta limit disruption in TFTR

Disruption Avoidance and Mitigation

mode (high radiation H-mode)

current quench duration (s) 5.0 mass (g) 0.02 25 .000 0.05 Limit Ð 8.8 40 VDE 0.5 MA (RA) 0.46 18 2 70 Хе 30 5 MA (RA) 🍗 0.100 100 2.2 15 MA (RA) 2 MA (RA) Current quench No RA duration 20/n_{e,20} S τςα 0.010 Thermal No FW surface melt (W = 1 GJ, PF = 2; Thermal Be FW, $T_0 = 600 \text{ K}$) quench duration 0.001 10 100 1000 ne (after injection) / ne0

3.0

Be

12

D

I = 21 MA, $n_{e0} \approx 1.2 \times 10^{20} \text{ m}^{-3}$

10.00

Injected

Thermal and current quench durations for fast plasma shutdown in ITER with various quantities (masses in g) and species of injected impurity