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Fusion Reactor Energetics

* Fundamental requirement of a fusion reactor system

The overall net energy should be larger than the total energy
externally supplied to sustain fusion reactions and associated
processes subtracted from the total recovered energy

. . . *: referring to the entire
Enet :Eout - Ein > O .
reaction volume
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Considering the time variations of power
(Particularly for pulsed systems)
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Fusion Reactor Energetics

 Fusion Plasma Energy Balance

di dt = di dt - di
gude ) gude ) JUodt

Thermal energy content in the total plasma volume

dt >0
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* 7. IS a measure of how fast the plasma looses its energy.
* The loss rate is smallest, 7. largest
if the fusion plasma is big and well insulated.
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Fusion Reactor Energetics

* *

E Plasma Q-value (fusion multiplication factor):

— fu _ fu . .

Qp = = " measure for how efficiently an energy input to
Eox  MuE; the plasma is converted into fusion energy

T T *

Jd “dt =¥, +E - E -E.- fE—ff’dt s (Ee g 41, fo|En- Era - J‘Eth dt
J dt JT J dt Q, JT,-
o o £ =0 (E,
) Jr .
If, steady state E, = T
fot -
Q,

if, Q,— =, the fusion energy delivered to the plasma via the charged

reaction products is seen to balance the total energy loss from the
plasma.

- What are requirements of a fusion reactor?
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Fusion Reactor Energetics

e Ignition
Energy viability of the fusion plasma:
actual self-sustaining engineering reactor condition with no heating power

Considering a D-T plasma with Q,— «,
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- In @a homogeneous plasma, local D-T fusion ignition condition:

Charged particle self-heating power > loss powers
(radiation + plasma transport)

Tp

f(p + P dt + fMdt
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- complex interrelation between the plasma density :
Plot?

and its temperature as required for ignition
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Fusion Reactor Energetics
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e n=102m3:T ~ 30 keV, nt..~ 2.7x102° m3s, 7.~ 2.7 S

e Ignition contours tend towards infinity as T approaches T,

crit*

Why?




Fusion Reactor Energetics
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e Ignition contours tend towards infinity as T approaches T . due to
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the high Bremmstrahlung and the cyclotron radiation. 14




Fusion Reactor Energetics

* Break-even (scientific)

The total fusion energy production amounts to a magnitude equal to

the
effective plasma energy input.
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 Lawson criterion from the original paper
- reactor criterion: energy viability of the entire plant

Some Criteria for a Power Producing Thermonuclear Reactor

By J. D. LAWSON
Atomic Energy Research Establishment, Harwell, Berks.

Communicated by D, W. Fry; MS. received 2nd November 1956

Abstract. Calculations of the power balance in thermonuclear reactors operating
under various idealized conditions are given. Two classes of reactor are
considered : first, self-sustaining systems 1n which the charged reaction products
are trapped and, secondly, pulsed systems in which all the reaction products
escape so that energy must be supplied continuously during the pulse. It s
found that not only must the temperature be sufficiently high, but also the
reaction must be sustained long enough for a definite fraction of the fuel to be

burnt.
Proceedings of the Physical Society (London), B70 6 (1957)
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Fusion Reactor Energetics

« Lawson criterion from the original paper
- Deriving some criteria which have to be satisfied in a power producing
system by considering power balance for systems in which the reaction
products escape, defined as “pulsed systems” by Lawson.
- The gas is heated instantaneously to a temperature T, this temperature is

maintained for a time t, after which the gas is allowed to cool.
- The energy released by the reaction appears as heat generated in the
walls of the apparatus (blanket), and thus has to be converted to
electrical,
mechanical or chemical energy before it can be fed back into the gas
with efficiency n.
- Assumptions: P, =1.4X10"** n°T"* watts cm™
considering Bremsstrahlung radiation only (Spitzer 1956)
(cyclotron radiation neglected)
neglecting congggtiﬂy;ldosggntirely
energy used to heat the gas and supply the radiation loss regained
as useful heat R :E’;u /E. .

ciinnliaAd
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 Lawson criterion from the original paper. . .
E Eout :Eaux +Efu

- Condition for a system with net power gainE:ut > E; —__aw
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o _ _ Total output energy after a pulse
"Yariation of R with T for various values < input energy for heating and

o2 of nt for T-D reaction compensating loss




Fusion Reactor Energetics

« Lawson criterion from the original paper

- Conclusion:
For a successful thermonuclear reactor not only has the temperature to

be
sufficiently high, but also the reaction has to be sustained for a sufficient
time. The reason for this is that the organized energy used to heat the gas
is ultimately degraded to the temperature of the walls of the apparatus
and, consequently, sufficient thermonuclear energy must be released
during each heating cycle to compensate for this degradation.




Fusion Reactor Energetics

* Lawson criterion

- The recoverable energy from a fusion reactor must exceed
the energy which is supplied to sustain the fusion reaction.

EOth > Ein out aux fu nm in
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 Lawson criterion

- output electric energy (recoverable energy) > required input energy
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Assuming, Bremsstrahlung only

771‘n7/}out der(rE*Pfu +TE*Pbr + BnT) > der(TE*Pbr + 3nT)
\% \%
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Assuming, homogeneity throughout the plasma volume V
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ab

Kronecker-6 introduced to account for the case of indistinguishable reactants
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Fusion Reactor Energetics

e Lawson criterion
3(1- ninnout)T

<ov>_,(T)Q,
a ©-1-n ApNT
4(1 +5 ab) ( nmnout) b

nt,. >

ninnout

- Practical energy break-even
condition for confinement
parameter nt; in a fusion

reactor of electric power plant -




Fusion Reactor Energetics

* Lawson criterion

HW
- Where is the Lawson
criterion located compared
with the breakeven and the
ignition condition in the
nt;,
kT plot?
- Can one express the
Lawson criterion with Q?
HW: What is the differ-
enceinP,, P P

in? aux? out

| among the criteria?
~15 ~100

lon Temperature, kT (keV)

N-Tau Parameter, Ntg. (s-m™3)

[ T T B

- No particular fusion design was necessary in the derivation of this criterion.

- Although it does not contain all relevant processes such as cyclotron
radiation, it is a useful and widely employed criterion.

- For commercial power applications, it would be necessary to exceed the
minimum Lawson limit by perhaps a factor of ten or better. 24




Plasma Center Density X Confinement Time (1/cmg/s)
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HW. What would be typical Q, in KSTAR?




/ Status of the Tokamak Research

confinement time = central density (10" sec-cm-a)

1000
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Status of the Tokamak Research
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Fusion Output Power (MW)

JET:
15 Fusion power
TFTR =16MW (1997)
(1994) y 4
\" ~Q =0.64
10 |-
JET:
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=20MJ (1997)
5 -
! | JET ‘ézo.z
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0 /‘/j I | I

1.0 2.0

30 40 50 6.0
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 DT-Experiments only in
- JET
- TFTR

Present machines produced significant fusion power:

- TFTR (USA) ~10 MW in 1994
- JET (EU) 16 MW (Q = 0.64) in 1997




)

Objectives of 2020 JET D-T operation: o)
15MW fusion power for 5 sec stationary state™

// 2020 DT with ITER Like Wall
15 :
JETELM o JETOTE2 e ITER scenarios
g TFTR |H-mode (1997)
s | | Isotope effect
= 10- a | hJET op(tjimised
L 1997
% ", | | _shear mode (1997) T-CyC|e
c L | : .
% P R‘\ || JET steady state U'pamCle phySICS
u:_i 5L P || _  ELMy H-mode (1997)
W ™ . C-Wall Fusion technology
AET DL \. : :
991! \ (Neutronics
N \\ i
o— . v A TSN ] e | | . :
0 1 2 3 4 5 6 7 8= = remote-handling, ...)
Time (s)
Previous DT was 20 years before and next DT will be 20 years later in ITER.
2020 JET DT is also Important to transfer the knowledge to the ITER generation.
JET Hyun-Tae Kim | Seminar in Seoul National University | 26 December 2018 | Page 17
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OPulse No: 42976 4.2MA/3.6T

 DT-Experiments only in
- JET
- TFTR

 with world records in JET:
- I:)fusion =16 MW

-Q =0.65

HW. Q,,, ?
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/ Status of the Tokamak Research
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1000k
JTEU ( JTe0u
100 Efulion: Triple product nTT doubles every 1.8 years Q JET
; JT60U DIID Pentium 4
i JT60U
108 JTsu O Pentium i
C |
8 ¥ Pentium I
0.1 o
0.01F
6663 i Accelerators: Energy doubles every 3 years |5
- EI:-_ Moore’s Law: Transistor number doubles every 2 years g
£ | 1 | i | i |
1970 1980 1990 2000
Year

Progress in fusion can be compared with the computing
power and particle physics accelerator energy.




Homework

- Problems 8.4
(submission until the next Thursday)
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