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‘Operation Limits

 Density ranges in a tokamak discharge
- There exist a lower and an upper density limit at a given /.

* Low densities
- e-i collision frequency not sufficient to prevent
the generation of run-away or accelerated electrons
- run-away electrons produced by the inductive E field
- run-away electrons spoil the discharge characteristics
and may be dangerous for the vacuum chamber

 High densities
- atomic processes (radiation, CX, neutral atom ionization)
at the plasma edge become rather important
- atomic processes can lead to contraction of the plasma column
(decrease of the effective plasma radius)
— danger of kink instability becomes real
\ ——————————————————————————————————————————————————————————————
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Operation Limits
« Assumptions

- Circular CX, steady-state with purely OH heating, T, =T, =T,
no impurities, atomic processes not important (radiation,
recycling, etc), fully ionized hot plasma

- Under these conditions, one can expect the existence of self-
similar self-organized plasma states, if they have the same
macroscopic non-dimensional parameters.




* Murakami and Hugill Numbers
- consider atomic processes

a, R, B, Bp, m,, m, e n, T

- To evaluate the role of atomic processes appropriate power losses
with Joule heating power should be compared.
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/ Dimensional Analysis of Tokamaks

- If P, becomes comparable to P,,,
atomic processes start to play a significant role.

e R e2
P, /P, =H’G(T)/F(T.)  H 2%, y=2
T

- The role of atomic processes is defined by a non-dimensional
parameter H (Hugill number): as increasing H, the role of atomic
processes increases compared with OH heating
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' Operation Limits

Hugill plot

- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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' Operation Limits

 Hugill plot
- Tokamak operational domain on the current-density plane is

restricted by four limits. 1: limit of run-away electrons at

) low density  j/en =v*™! = /2T /m,
2: current limit due to the
MHD-instability
3: Murakami limit at high density
(at the maximal permissible plasma
I _ B current): radiative power balance
H nq,R  4: Hugill density limit where

I71c=1/qess

gradient:

non-dimensional current

non-dimensional density confinement/disruptive limit

- The limiting density is determined by the power balance on the
plasma periphery (by balance of the energy flow from the central
region and radiation and ionization losses).

- The density limit usually increases with additional heating as P2,

n,R/B; H (H = q_M) remains constant (n~/):
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Hugill plot
- Tokamak operational domain
restricted by four limits.

extended boundary
01 = with addiional heating

T 1
0o 1 2 3 4 5 & 7 §  nR/Bg

on the current-density plane is

1: limit of run-away electrons at
low density  j/en =v*™! = /2T /m,
2: current limit due to the
MHD-instability
3: Murakami limit at high density
(at the maximal permissible plasma
current): radiative power balance
4: Hugill density limit where
H (H = q_M) remains constant (n~/):
confinement/disruptive limit

- The limiting density is determined by the power balance on the
plasma periphery (by balance of the energy flow from the central
region and radiation and ionization losses).

- The density limit usually increases with additional heating as P2,

8




E
Operation Limits
 Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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' Operation Limits

* Hugill plot
- Attaining high densities by using beryllium coating of the

densities.

NeR/BT (1020 m2 T-1)
- The two dashed lines illustrate the density limits in earlier OH/ICRF and NBI

experiments with a mainly carbon 1st wall.
- When heating power is increased, the Hugill limit shifts towards higher
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* Hugill plot
- Attaining high densities by using beryllium coating of the
chamber
wall in JET and with the help of pellet injection in JT-60U

1.3mm pellets

~100-150 m/s
(2 mbar-L, 1x1020
atoms per pellet)

HFS

ORNL 3 barrel injector
20 Hz per gun

New ITER like
X-point Injection line
added in 2011
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* Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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* Hugill plot
- limited operational region on the current-density plane
- non-dimensional current .VS. non-dimensional density
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* Greenwald density limit
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- A NEW LOOK AT DENSITY LIMITS IN TOKAMAKS
* Greenwald density -

M. GREENWALD, J.L. TERRY, S. M. WOLFE
Plasma Fusion Center,

Massachusetts Institute of Technology,
Cambridge, Massachusetts

S. EIIMA*

General Atomic Technologies,
n=xJ (1) e Dieeo, California

M.G. BELL, S.M. KAYE
measured in 102° m™3 where « is the plasma elonga- Princeton Plasma Physics Laboratory,

Princeton University,

tion and J is the average plasma current density, with Princeton, New Jersey

the 1, area measured in MA-m~%. Figures 4a to 4d

o i ) ) G.H. NEILSON
are modified Hugill plots for several machines, showing oak Ridge National Laboratory,
the results of this scaling. They should be compared Oak Ridge, Tennessee
with Fig. 3. For elliptical machines this scaling for United States of America

the density limit can be written as iy, = 1;/ma’,
and for high aspect ratio, low beta, circular machines
it can be written as (Slﬂ) X B/qR A few commentson ABSTRACT. While the results of early work on the density limit in tokamaks from the ORMAK and DITE

groups have been useful over the vears, results from recent experiments and the requirements for extrapolation to
future experiments have prompted a new look at this subject. There are many physical processes which limit the
attainable densities in tokamak plasmas. These processes include: (1) radiation from low Z impurities, convec-
tion, charge exchange and other losses at the plasma edge; (2) radiation from low or high Z impurities in the
plasma core; (3) deterioration of particle confinement in the plasma core; and (4) inadequate fuelling, often
exacerbated by strong pumping by walls, limiters or divertors. Depending upon the circumstances, any of these
processes may dominate and determine a density limit. In peneral, these mechanisms do not show the same
dependence on plasma parameters. The multiplicity of processes leading to density limits with a variety of scaling
has led to some confusion when comparing density limits for different machines. The authors attempt to sort out
the various limits and to extend the scaling law for one of them to include the important effects of plasma shaping,
iem, = xkJ, where n, is the line average electron density (1 0™ m™), & is the plasma elongation and T (MA-m™?)
is the average plasma current density, defined as the total current divided by the plasma cross-sectional area. Ina
sense, this is the most important density limit since, together with the q-limit, it yields the maximum operating
density for a tokamak plasma. It is shown that this limit may be caused by a dramatic deterioration in core
particle confinement occurring as the density limit boundary is approached. This mechanism can help explain the
disruptions and Marfes that are associated with the density limit,
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/ Basic Tokamak Variables

 Greenwald density

n. =
G 2
Jua

- As the limit is approached, the plasma becomes increasingly
susceptible to disruption and data become sparser.

M. Greenwald et al, NF 28 199 (1988): one of the most cited paper in NF
Martin Greenwald, PPCF 44 R27 (2002)




* Greenwald density
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' Operation Limits

 Pressure Limit
- related to the ballooning instability occurring due to convex
magnetic lines of the outer region:
swelling on magnetic surface at the high pressures
- force balance between the cause for swelling (plasma pressure
gradient) and the magnetic tension
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' Operation Limits

* Pressure Limit
- If g is constant, for the most effective use of the B,

it is preferable to have the values of B as high as possible.

= high B =gl. =g I 2nka
c —IEIN TY
Ic MOR

e Since //l_is limited by the upper current limit on the Hugill

diagram, ka/R should be maximized.
— The column should be elongated vertically as much as
possible.

 The experimental dqgag%crilica_lﬁ.ar% summarized by a simple
empirical formulae aB; aB,
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 DIII-D hybrid modes

gos>4 without sawteeth

PLASMA CURRENT(0.1MA) 113993

g.s=3.6 without sawteeth q,,=3.2, B,=2.7, Hgep=2.3
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* Pressure Limit
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KSTAR

e High B, in KSTAR
1. Strong plasma shaping
(PF/CS system capability)

* Pressure Limit

[ ] 2. Passive stabilizers
°T ] 3. High heating power
b B 4. RWM control coils
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