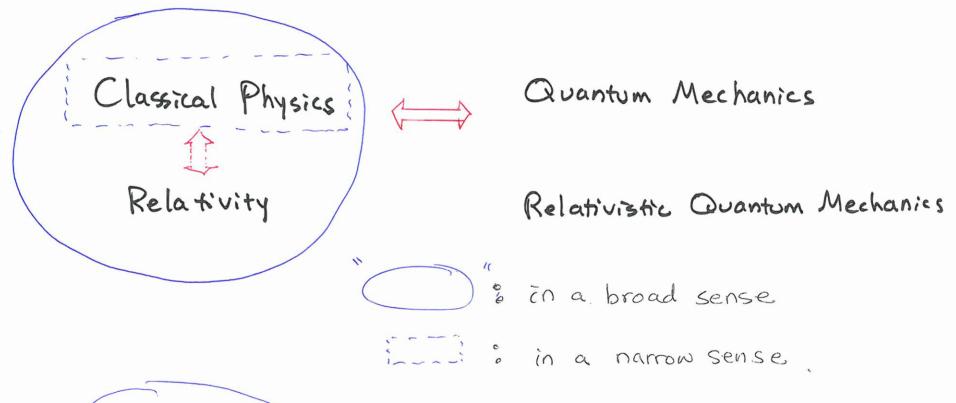
Fundamentals of Engineering Physics 2019

Week 1.

- 1. Classical Mechanics
- 2. Electricity and Magnetism
- 3. Waves
- 4. (Prelude for) Quantum Mechanics
- 5. Statistical Mechanics.

I. Classical Mechanics

Lecture 1: The Nature of Classical Physics



Declassical Physics provides an accurate description of adynamical System at a scale greater than size of atoms and molecules.

(B) Classical Physics etc * Relativity is necessary for V < C.

* If you know everything about a system at some instant of time (initial and also the equations that govern how the system changes, then you can predict the future.

(Governing Equation(s))

* The job of classical mechanics is to predict the future.

Read a famous gaote from "Pierre-Simon Laplace" on page 1-2.

* The meaning of "reversible";

- The laws are deterministiz into the past as well as the future. ($t \rightarrow -t''$)

"the future" just like the past would be present before its eyes."

The Limits of Precision

- * Laplace has been overly optimistic about how predictable the world is .
 - 1. " equation for movements of atoms" > it would require Quantum Mechanics
 - 2. Even in classical physics, ability to know the initial conditions with almost perfect precision"
 - > sextremely demanding and impractical for large enough system
 - 3. Furthermore, the space of initial states is, in many cases, infinitely continuously infinite .

(uncountable)

- * "Resolving Power": ability to distinguish the values of neighboring numbers.
- * Chalos ", very small differences in the initial conditions lead to large eventual differences in later time. It's a consequence of limited resolving power.

* Particle Motion:

- · Consider a point particle at a position $\vec{r}(t)$ specified by components x, y and z at time t.
- Trajectory: the path of the particle
- In classical mechanics, given the dynamical laws and initial conditions, one can figure out profits.
- Velocity: $\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{r}(t+\Delta t) \vec{r}(t)}{\Delta t} = \vec{r}$

 $v_i = \frac{dx_i}{dt}$ (for i = 1, 2, and 3) is a short-hand notation for $v_x = \frac{dx}{dt}$, $v_y = \frac{dy}{dt}$, and $v_z = \frac{dz}{dt}$.

The velocity is a vector with a magnitude $|\vec{v}|$ (Speed). $|\vec{v}|^2 = v_x^2 + v_y^2 + v_z^2$. $|\vec{v}| = |d\vec{r}|$, but $|\vec{v}| \neq d|\vec{r}|$ in general.

I-6.

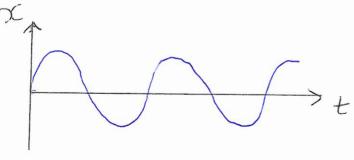
* Acceleration:
$$a_i = \frac{dv_i}{dt} = v_i$$

- The time rate at which the velocity is changing.
- You feel acceleration when your velocity vector changes, So acceleration can happen at a constant speed.

Eg. 1, Free Fall: X(t) = 0, Y(t) = 0, and $Z(t) = Z(0) + V(0)t - \frac{1}{2}gt^2$ applying "of", we obtain $v_x(t)=0$, $v_y(t)=0$, and $v_z(t)=v_z(t)=v_z(t)=0$.

11 once more, if $a_x(t)=0$, $a_y(t)=0$, and $a_z(t)=-g$

Eq2. Simple Harmonic Oscillator (SHO): X(t) = Sin(wt)



Simple Harmonic Oscillator

I-7,

- * X(t) = sin (wt) = applying "d" to get $v_x(t) = \omega \cos(\omega t)$,

 = applying "d" once more, we obtain $\alpha_x(t) = -\omega^2 \sin(\omega t)$.
- * Note that; when the position X is

 at its

 the velocity is
 - maximum or "Zepo"
 - Zero" " maximum or minimum."
 - The and Vx are 90° (sr I) out of phase;
- * Significance of "minus" sign in ax(t) = " w sin(wt) = w x(t) ;
 - Where over the particle is, it is being accelerated back toward the origin.

Uniform Circular Motion about the Origin

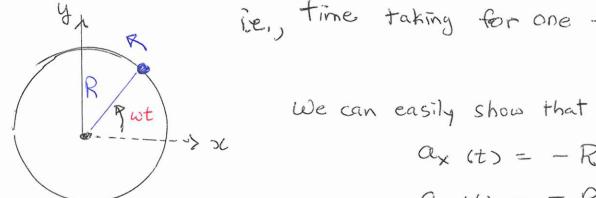
I-8,

*
$$\left[\chi(t) = R \cos(\omega t) \right]$$

 $\left[\chi(t) = R \sin(\omega t) \right]$

*
$$\left[\begin{array}{c} \chi(t) = R \cos(\omega t) \\ \chi(t) = R \sin(\omega t) \end{array}\right]$$
 is called the angular frequency.

The simple is the period of the period of the simple state of



i.e., time taking for one full cycle of motion.

$$a_{x}(t) = -R \omega^{2} \cos(\omega t)$$

* The acceleration of a circular orbit is parallel to the position vector, but it is oppositely directed. In other words, the acceleration vector points radially inward toward the origin .

* Note that a projection of the uniform circular motion to X-axis (or y-axis) leads to a SHO motion.

- * Submit one week from the day of announcement.
 - * in after the class.

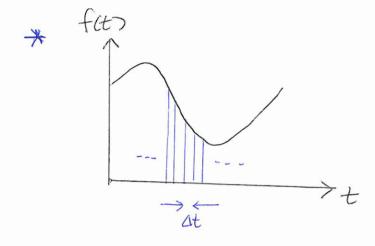
HW Set #1:

Exercise 7 and 8 on page 46.

Interlude 2: Integral Calculus

I,-10,

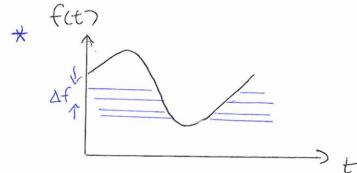
* Reverse operation of differentiation"



Divide the area under the curve y = f(t)

into vertically oriented rectangles.

Sum over those, taking At >0



Cuby not horizontally oriented rectangles ?"

-> "Le besque" integral.

* Integration by Parts (IBP) I-11

* Suppose we encounter an integral of the form

$$\int_{a}^{b} g(x) \left(\frac{df(x)}{dx} \right)''$$

and don't know how to do it directly.

* If you recognize that "fcx" is not much more complex than df(x), but dg(x) is much simpler than g(x),

from $\frac{d}{dx}(fg) = f\frac{dg}{dx} + (fg)g$, we obtain

$$\int_{a}^{b} g(x) \left(\frac{df(x)}{dx} \right) = \left[f(x) g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) \left(\frac{dg(x)}{dx} \right) .$$

* If = is an easier integral than -, it can work .

* It requires some experience and trial and error sometimes.

I-12

* Example of IBP;

$$\int_{0}^{\pi/2} x \cos x \, dx = \int_{0}^{\pi/2} x \, dx \sin x \right) dx = \left[x \sin x \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} dx (x) \sin x \, dx$$

$$= \left[x \sin x \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} \sin x \, dx = \left[x \sin x \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} dx (x) \sin x \, dx$$

Poor boy's attempt:

$$\int_{0}^{\pi/2} x \cos x \, dx = \int_{0}^{\pi/2} \frac{d}{dx} \left(\frac{x^{2}}{2}\right) \cos x \, dx = \left[\frac{x^{2}}{z} \cos x\right]_{0}^{\pi/2} - \left(\frac{x^{2}}{z} - \left(-\sin x\right)\right) \, dx$$

= ???? i more difficult integration!, backward progress.

Substitution of Variables

* Suppose you encounter an integration of the form $\int f(h(x)) g(x) dx$ where $g(x) = \frac{d h(x)}{dx}$

-> Then by letting him = u, we get "I flux du."

* Eg.: $S_0^{Th} = S_0^{Th} \times Cos \times dx = S_0^{1} = u du = --->$ (recognizing $u = sin \times$)