Fundamentals of Engineering Physics 2019
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Fig. 2.3 Computer-made pictures showing a statistical ensem- known to be in the left half of the box at some initial time cor-
ble of systems. This ensemble was constructed to represent a  responding to the frame § = 0, but nothing else is known about
system consisting of 40 particles in a box when the information  their positions or velocities.

available about the system is the following: All particles are ‘



Fig. 2.3 (cont.)
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The evolution in time of the kth system in the ensemble can  system at any time corresponding to the jth frame can be made

be followed by looking horizontally at the successive frames

i=0,12, ... for this system. Statistical statements about the doing the counting necessary to determine probabilities,

by looking vertically at all the systems in their jth frame and
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ig. 2.4 Continuation of Fig. 2.3. The ensemble has by now
become time-independent, i.e., the system has attained equi-

librium.
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Table 3.1 Quantum states of a single spin
4 having a magnetic moment g and located
in a magnetic field B. Each state of the sys-
tem can be labeled by an index r, or alterna-
tively, by the quantum number o. The
magnetic moment (along the “up” direction
specified by the field B) is denoted by M; the
total energy of the system is denoted by E.

Fig. 3.2 Diagram showing the two energy
levels of a spin # having a magnetic moment
tto and located in a magnetic field B. The
state where the magnetic moment points “up,”
so that its direction is parallel to B, is denoted
by o = 41 (or simply by +); that where it
points “down” is denoted by 0 = —1 (or sim-
ply by —).

() Single spin

Consider a single particle, assumed to
be fixed in position, which has spin } and
a magnetic moment of magnitude po.
As already discussed in Sec. 1.3, this
moment will be found to point either
“up'” or “‘down'’ (i.e., parallel or antipar-
allel) with respect to any specified direc-
tion. The system consisting of this single
spin thus has only two quantum states
which we shall label by a quantum num-
ber 0. We can then denote the state
where the magnetic moment of the par-
ticle points up by ¢ = +1, and the state
where it points down by o = 1.

If the particle is in the presence of a

magnetic field B, this field specifies the

direction of physical interest in the prob-
lem. The energy E of the system then is
lower when the magnetic moment is
aligned parallel to the field rather than
antiparallel to it. The situation is analo-
gous to that of a bar magnet located in
an external magnetic field. Thus, when
the magnetic moment points up (i.e.,
parallel to the field B), its magnetic en-
ergy is simply —poB. Conversely, when
the moment points down (i.e., antiparal-
lel to the field B), its magnetic energy is
simply poB. The two quantum states (or
energy levels) of the system then corre-
spond to different energies.

} The hydrogen atom is likely to be a familiar example of a system described in terms
of discrete energy levels. Transitions of the atom between states of different energy give
rise to the sharp spectral lines emitted by the atom. A description in terms of energy levels
is, of course, equally applicable to any atom, molecule, or system consisting of many atoms.

{ In some cases there may be a relatively small number of quantum states of the same
energy equal to the lowest possible energy of the system. The ground state of the system

is then said to be degenerate.
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(i) Ideal system of N spins

Consider a system consisting of N parti-
cles, assumed to be fixed in position,
where each particle has spin  and a
magnetic moment pg. The system is lo-
cated in an applied magnetic field B.
The interaction between the particles is
assumed to be almost negligible.}

The magnetic moment of each particle
can point either up or down with respect
o the field B. The orientation of the ith
moment can thus be specified by the
value of its quantum number g; so that
o; = + 1 when this moment points up and
a; = —1 when it points down. A particu-
lar state of the whole system can then be
specified by stating the orientation of

(iti) Particle in a one-dimensional box

Consider a single particle, of mass m,
free to move in one dimension. The par-
ticle is supposed to be confined within a
box of length L, so that the particle’s
position coordinate x must lie in the
range 0 < x < L. Within this box the
particle is subject to no forces.

In a quantum-mechanical description,
the particle has wave properties associ-
ated with it. The particle confined within
the box and bouncing back and forth be-
tween its walls is thus represented by a
wave function ¢ in the form of a standing
wave whose amplitude must vanish at
the boundaries of the box (since ¥ itself
must vanish outside the box).f The
wave function thus must be of the form

each of the N moments, i.e., by specify-
ing the values assumed by the set of
quantum numbers {oy,02, ..., 0x}. Thus
one can enumerate, and label by some
index r, all the possible states of the
whole system. This is done in Table 3.2
for the special case where N = 4. The
total magnetic moment of the system is
simply equal to the sum of the magnetic
moments of the individual spins. Since
the interaction between these spins is
almost negligible, the total energy E of
the system is also simply equal to the
sum of the energies of the individual
spins.

Y(x) -_-. A sin Kx 1)

(where A and K are constants) and must
satisfy the boundary conditions

Y(0) = 0 W) =0. @

The expression (1) obviously satisfies the
condition J(0) = 0. In order that it also
satisfy the condition (L) = 0, the con-
stant K must be such that

and

-KL:ﬂn

or K = =n, (3)

A

where n can assume any of the integral
values§

n=1223,4,.... 4)

Table 3.2 Quantum states of an ideal system
of 4 spins %, each having a magnetic moment ¢
and located in a magnetic field B. Each
quantum state of the whole system is labeled
by the index , or equivalently, by the set of
4 numbers {0y, 02, 03, 04}, For the sake
of brevity, the symbol + indicates 6 = +1
and the symbol — indicates 0 = —1. The
total magnetic moment (along the “up” direc-
tion specified by B) is denoted by M; the total
energy of the system is denoted by E.



104  Statistical Description of Systems of Particles

The constant K in (1) is the wave num-
ber associated with the particle; it is re-
lated to the wavelength A (the so-called
de Broglie wavelength associated with the
particle) by the relation

K=27, (5)

A
Hence (3) is equivalent to
A
L=n=
. n 2

and represents merely the familiar con-
dition that standing waves are obtained
when the length of the box is equal to
some integral multiple of half-wave-
lengths. _

The momentum p of the particle is re-
lated to K (or A) by the famous de Broglie
relation -

p=ﬁK=% - (8)

where A = h/27 and h is Planck’s con-
stant. The energy E of the particle is
simply its kinetic energy, since there is
no potential energy due to external
forces. Hence E can be expressed in
terms of the velocity » or momentum
p = mo of the particle as

h2K?2
om0

The possible values (3) of K then yield
the corresponding energies

72h? n?
am L2

E = -ﬁz——(ﬂ'«ﬂl,)2 = (8)
Zm \L .

Equivalently, we could have discussed
the whole problem from a more mathe-
matical point of view by starting from the
fundamental Schrodinger equation for
the wave function . For a free particle
in one dimension this equation is

ey

2m ox2

The functional form (1) satisfies this

~ equation provided that the energy E is

related to K by (7). The condition (2)
that the wave function must vanish at
the boundaries of the box leads again to
(3) and hence to the expression (8) for
the energy. :

The possible quantum states of the -
particle in the box thus can be specified
by the possible values (4) of the quantum
number n. The corresponding discrete
energies of these states (i.e., the corre-
sponding energy levels of the particle)
are then given by (8).

The relation (8) shows that the separa-
tion in energy between successive quan-
tum states of the particle is very small if
the length L of the box is of macroscopic
size. The lowest possible energy of the
particle, i.e., its ground-state energy, cor-
responds to the state n=1. Note
that this ground-state energy dces not
vanish.{



Sec. 3.1

The wave function of the particle now
represents a standing wave in three di-
mensions. Thus it is of the form

¥ = Afsin Ka)(sin K,g)(sin K.2)  (9)

where the constants K, K,, K, can be

regarded as the three components of a
vector K, the wave vector of the particle.
According to the de Broglie relation the
momentum of the particle is then given

by

p =#tK (10)
so that the relationship between the mag-
nitude of p and the magnitude of K (or

the wavelength A) is the same as in (6).
The energy of the particleis then given by

p2  h°K2

E = =
2m 2m

. |
- ;‘—m(rcs + K2 +K2). (1)

Equivalently, it can be immediately veri-
fied that ¢ in (9) is indeed a solution of
the time-independent Schrédinger equa-
tion for a free particle in three dimen-
sions,

e (aw 220 azap)_
2m \ 9x2 + oy? + oz ] T Elp’

provided that E is related to K by (11).

105

The fact that ¢ must vanish at the
boundaries of the box imposes the con-
ditions that

v = 0 at the planes

9.'=0, y=0,

z=0,

|

:L‘=L,, y.—-.LH.,

ZF LG.

The expression (9) vanishes properly
whenx=0,y=0, or 2= 0. To make
it vanish for x =L, y =Ly, or 2= L,,
the constants K., K;, K, must satisfy the
respective conditions

K::l =l :=1
I, n., Ky I n, K I n.,

(19)
where each of the numbers n,, n,, and n,

can assume any of the positive integral
values '

oy etz = 1,2,3,4,.... (14

Any particular quantum state of the par-
ticle can then be designated by the values
assumed by the set of quantum numbers
{nz, ny, n.). lts corresponding energy is,
by (11) and (13), equal to

E— w2h?2 (ﬂ,;2 n,2 ﬂzz)

~ 2m +

15
L2 L2 T L;? 1)
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