Fundamentals of Engineering Physics 2019

Week 6.

Energy of a System of Charges

· Consider the Work" which must be done on the system to bring some charged bodres into a particular arrangement

* Consider two charged bodies first:

The sider two charged bodies first:

$$V = \int f_{orce} \times distance = \int \frac{9922(-dr)}{r^2} = \frac{9192}{r_{12}}$$

(3)

winitial distance

(See Fig. 1.4.)

· W is "independent" of the path of approach! : Fids = Fdr (only radial component of) (See Fig 1.5.)

~ electric forces are conservative.

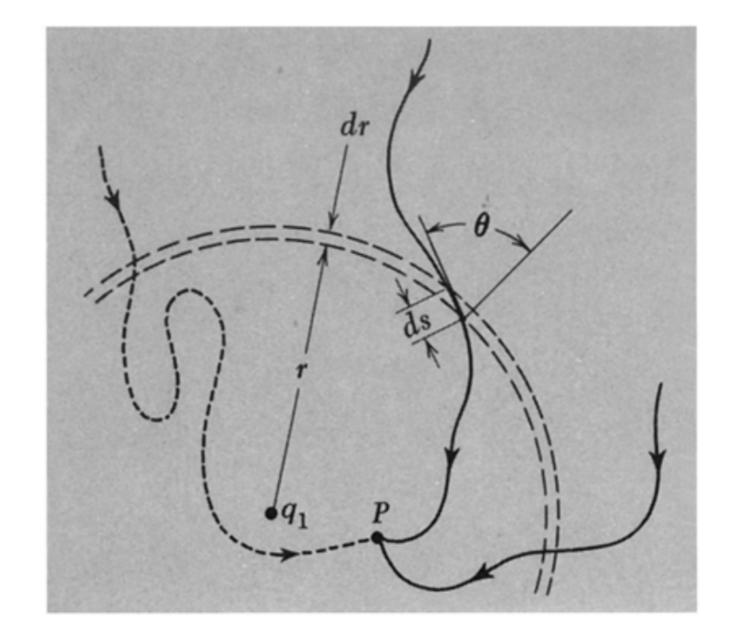


FIGURE 1.5

Because the force is central, the sections of different paths between r + dr and r require the same amount of work.

II.6.

* Now, bring the third charge 23 from infinity

(See Fig. 1.4. (c))

$$W_{3} = -\int_{\infty}^{P_{3}} \vec{F}_{3} \cdot d\vec{s} = -\int_{\infty}^{P_{3}} (\vec{F}_{31} + \vec{F}_{32}) \cdot d\vec{s}$$

$$= -\int_{\infty}^{P_{3}} \vec{F}_{3} \cdot d\vec{s} - \int_{\infty}^{P_{3}} \vec{F}_{32} \cdot d\vec{s}$$

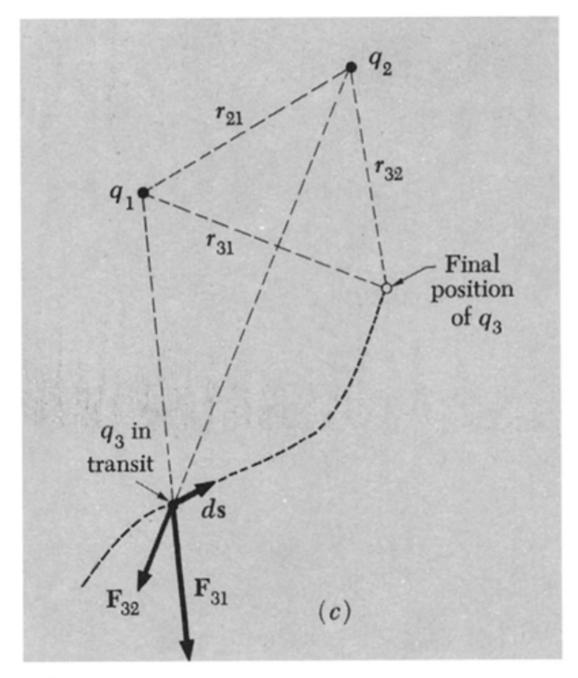
$$= -\int_{\infty}^{P_{3}} \vec{F}_{31} \cdot d\vec{s} - \int_{\infty}^{P_{3}} \vec{F}_{32} \cdot d\vec{s}$$

$$= \frac{2i23}{r_{31}} + \frac{2i23}{r_{32}}.$$
(6)

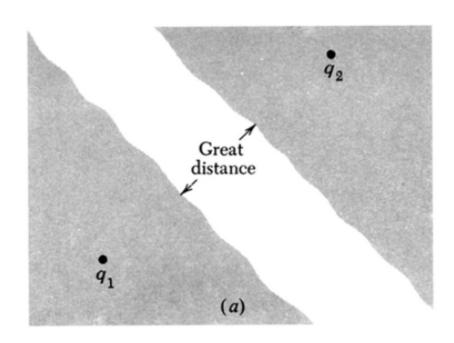
The total work done in assembling this arrangement of three charges, U, is.

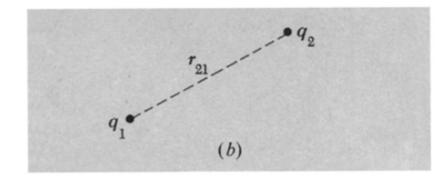
Electrical
$$T = \frac{2122}{V_{12}} + \frac{2223}{V_{23}} + \frac{2321}{V_{31}}$$
 (7)

- Symmetric W. r.t. 21,92 and 23
- independent of the order in which charges are assembled.



Three charges are brought near one another. First q_2 is brought in; then with q_1 and q_2 fixed, q_3 is brought in.





11,-7

* The potential energy belongs to the configuration as awhole.

- Eg. 1. in Fig 1.6.

$$U = \frac{8(-2e^2)}{\sqrt{\frac{3}{2}}b} + \frac{12e^2}{b} + \frac{12e^2}{\sqrt{2}b} + \frac{4e^2}{\sqrt{3}b} = \frac{4.32e^2}{b}$$

(number of legs connecting two charges)

U>0: Work had to be done on the system to assemble it.

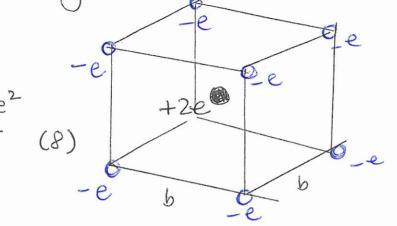


Fig. 1.6.

· For N bodies of charges:

$$U = \sum_{j=1}^{N} \sum_{k \neq j} \frac{2^{s} 2^{k}}{Y_{3k}}.$$
 (9)

- Eg.2. A Crystal Lattice in Fig 1.7

$$U = \frac{1}{2}N\left(-\frac{6e^2}{a} + \frac{12e^2}{\sqrt{2}a} - \frac{8e^2}{\sqrt{3}a} + \cdots\right) = \cdots = \frac{-0.87Ne^2}{a} < 0. \quad (12)$$

Work would have to done to take the crystal apart into individual ions. "

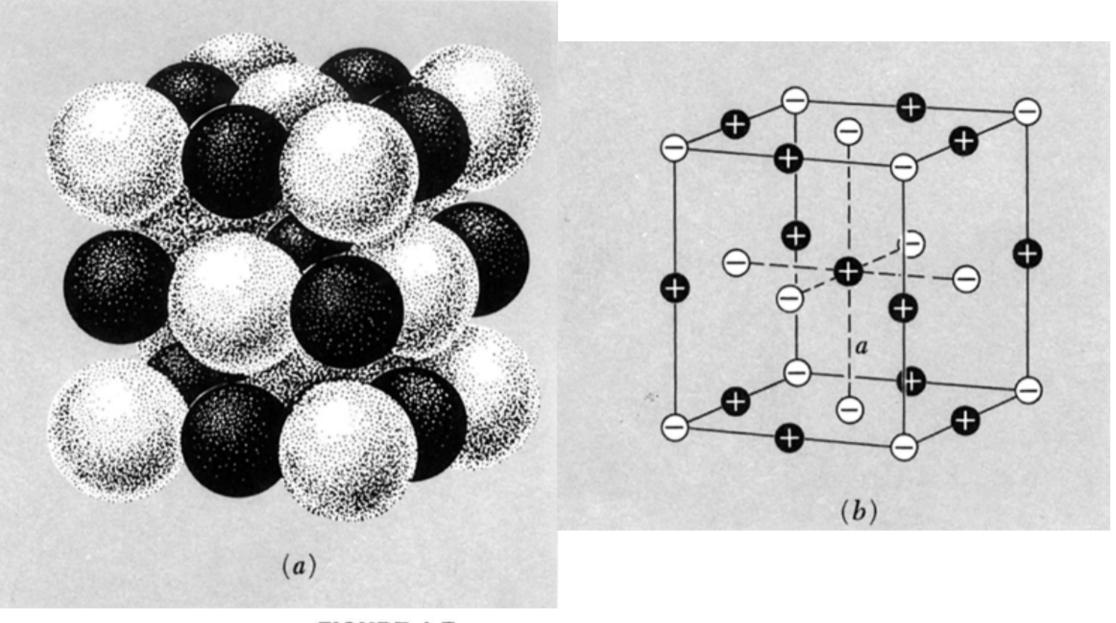


FIGURE 1.7

A portion of a sodium chloride crystal, with the ions Na⁺ and C1⁻ shown in about the right relative proportions (a), and replaced by equivalent point charges (b).

The Electric Field

* Consider some arrangement of charges, 21, 22, ..., 2N, and the force on another charge go they exert.

$$\dot{F}_{0} = \sum_{j=1}^{N} \frac{202j \, \hat{r}_{0j}}{f_{0j}^{2}} = 20 \sum_{j=1}^{N} \frac{2j \, \hat{r}_{0j}}{r_{0j}^{2}} \tag{13}$$

* Electric Field:
$$\stackrel{\frown}{E}(x,y,z) = \stackrel{N}{\sum} \frac{2j r_{0j}}{r_{0j}}$$
 (14)

at the point (x,y, Z).

· charges 9,22, -- 9, are the sources of the field.

* There are at least two different ways to illustrate the Electric Field; using arrows Fig 1.9, or lines. [Fig.1.11.

11.-9

* Change Distributions:

$$\frac{\vec{E}(x, y, z)}{\vec{F}(x, y, z)} = \sum_{j=1}^{N} \frac{2_{j} \cdot r_{0j}}{r_{0j}^{2}} \xrightarrow{\text{continuum}} \int \frac{P(x', y', z') \cdot r \cdot dx'dy'dz'}{r^{2}}$$

Electric Field at

Sources at (1/1)

Electric Field at

(X,4, 2)

produced by Sources at (x', y', 2')

where.

$$Y^2 = (x-x')^2 + (y-y')^2 + (z-z')^2$$

Flux

See Fig. 1.13 and 1.14

Consider a number of fishes one can catch.

Rate of flow of water thru the frame per unit time

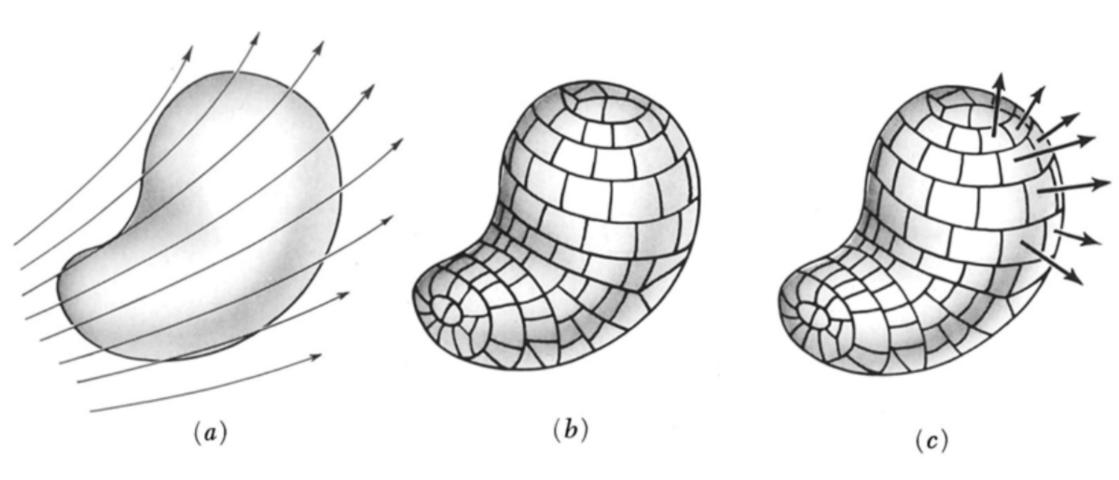


FIGURE 1.13

(a) A closed surface in a vector field is divided (b) into small elements of area. (c) Each element of area is represented by an outward vector.

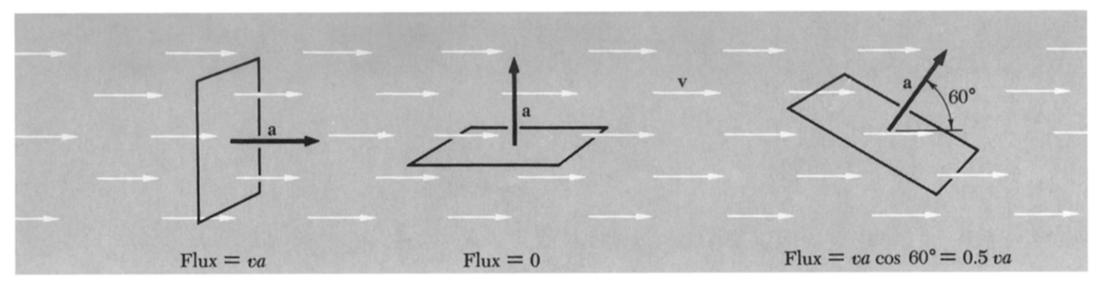


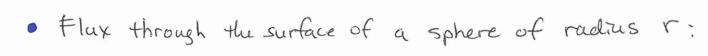
FIGURE 1.14

The flux through the frame of area \mathbf{a} is $\mathbf{v} \cdot \mathbf{a}$, where \mathbf{v} is the velocity of the fluid. The flux is the volume of fluid passing through the frame, per unit time.

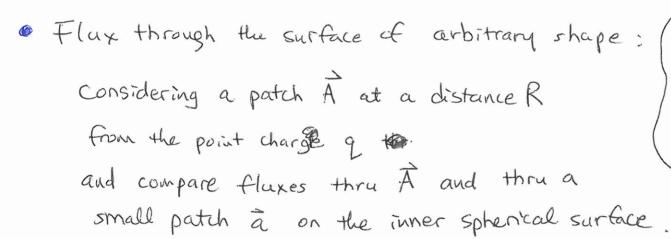
Gauss's Law

II-10

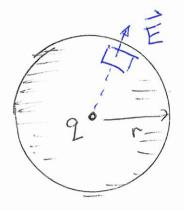
* Consider a single point charge "2" at the origin:

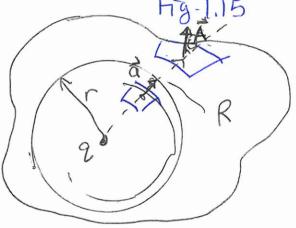


$$\Phi = E \times (area) = \frac{9}{r^2} \times 4\pi r^2 = 4\pi q$$
 (18)



"
$$E(R) A \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{r}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{R}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{R}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{R}{R} \right)^2 \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{R}{R} \right) \right] \cdot \left[a \left(\frac{R}{r} \right)^2 \frac{1}{\cos \theta} \right] \cos \theta = \left[E(r) \left(\frac{R}{R} \right) \right] \cdot \left[a \left(\frac{R}{r} \right)$$

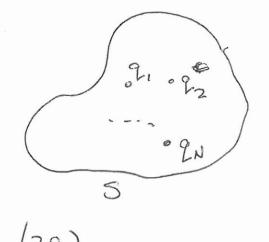




11-11

* Flux through some surface & enclosing charges 21, 92, --- 2N;

 $\oint = \iint_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ from principle of $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \stackrel{\sim}{E}_{2} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \cdots \stackrel{\sim}{E}_{N}) \cdot d\vec{a}$ $\int_{S} \stackrel{\sim}{E} \cdot d\vec{a} := \iint_{S} (\stackrel{\sim}{E}_{1} + \cdots$



Gauss's Law

The flux of the electric field E through any closed surface, that is, the integral SE-da over the surface, equals 411 times the total charge enclosed by the surface: "

SË ·dā = 417 \(\frac{7}{2} = 417 \) \(\rac{7}{2} = 417 \) \(\rac{

11-12

See Fig 1.18

and 1.19

For systems with symmetry, one can calculate the E field more easily using the Gauss's law without using the Coulom's law - followed by integrations, for instance using

$$\stackrel{?}{=} (x,y,z) = \begin{cases} P(x',y',z') \stackrel{?}{=} dx'dy'dz' \\ r^2 \end{cases}$$
 (15)

1. Field of a spherically symmetric charge distribution

· Considering a spherical surface SI of radius VI,

= E1. HTT = 4TT. (charge Inside Si),

$$E_1 = \frac{\text{charge inside S1}}{h^2}$$
 (23)

2. Field of a line charge with the line charge density , . Considering a "tin can" with radius r and Lengh L,

$$\oint = 10 \text{ Er} \cdot 2\pi r L = 4\pi \lambda L$$

See Fig.

 $\lim_{n \to \infty} E_n = 2\lambda / r$

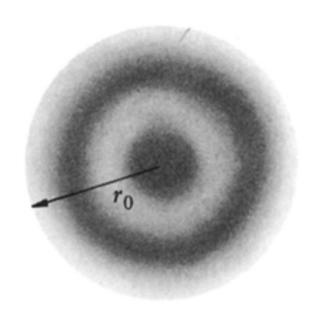
(27).

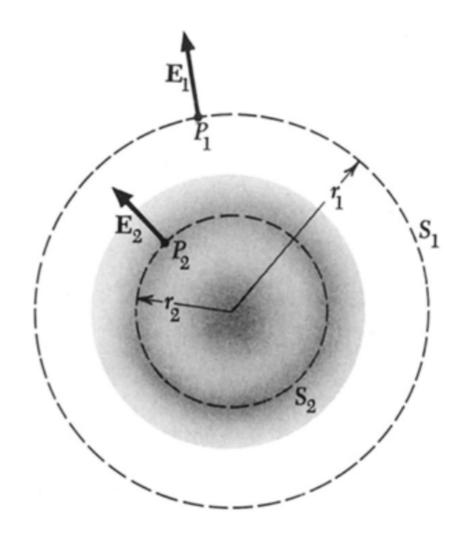
FIGURE 1.19

The electric field of a spherical charge distribution.

FIGURE 1.18

A charge distribution with spherical symmetry.





II-13

3. Field of an infinite flat sheet of charge. with a surface charge density o.

Considering a cylinder in Fig. 1.23, and using the Gauss's law,

Since this system has a reflectional (mirror) symmetry,

Ep = Ep/o

$$E_{p} = 4\pi\sigma/2 = 2\pi\sigma$$
 (28)

i.e, independent of distance "P" from the sheet.

Homework

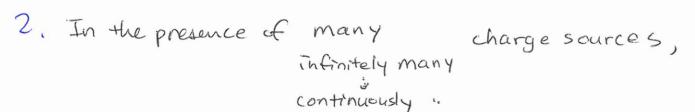
Problems 4.5, 1.14, 1.17, 1.21

2. The Electric Potential

- · Line Integral of the Electric Field is path-independent.

1. In the presence of a point charge source
$$Q$$
, $S_{P}^{2} \stackrel{?}{=} d\mathring{s} = S_{r_{1}}^{r_{2}} \stackrel{Q}{=} dr = Q\left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)$ (2)

(only the component of ds parallel to E contributes)



we can use the principle of superposition

The line integral SP, E.ds for any electrostatic field E has the same value for all paths from Pa to Pz (4)

Potential Difference and Potential Function

11-15

· Potential Difference:
$$\frac{1}{2} = -\int_{P}^{P_z} \stackrel{?}{=} ds$$

Then,
$$\stackrel{\rightarrow}{E} = -\stackrel{\rightarrow}{\nabla} \varphi(x,y,z)$$
 (12)

with $P_2 = (x,y,z)$ and P_4 is the reference point.

We can obtain È once we know a scalar function (P(x,y,Z)!

* Potential of a charge distribution

$$Q(x,y,z) = \begin{cases} P(x',y',z') dx'dy'dz' \end{cases}$$
All sources (15)

In most cases, this integral is easier to perform than that using the Coulomb's law.

For instance, potential of a long charged wire with line density γ is given by $\varphi = -2\lambda \ln r + const.$ (17) Ê= - Φ φ = 2 κ (18)

Potential of a Uniformly Charged Disk.

11-16

•
$$\varphi(0,y,0) = \int \frac{dq}{r} = \int \frac{2\pi 6 \text{ sds}}{\sqrt{y^2 + s^2}}$$

$$= 2\pi6 \left[\sqrt{y^2 + s^2} \right] = 0$$
 (19)

$$= 2\pi 6 \left(\sqrt{y^2 + a^2} - |y| \right) \quad (20, 21).$$

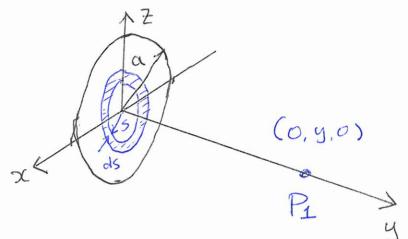


Fig. 2.6.

In the Limitar of very large y (>>a),
$$(10.4,0) \rightarrow \frac{60.2.6}{4}$$
, for y>>a

i.e., "(10^{2}) or "acts like a point charge source.)

(23)

•
$$\vec{E} = -\vec{\nabla} Q = -\hat{q} \frac{\partial}{\partial y} \left\{ 2\pi \sigma \left(\sqrt{y^2 + a^2} - 1y1 \right) \right\}$$

$$= \hat{q} 2\pi \sigma \left[1 - \frac{1y1}{\sqrt{y^2 + a^2}} \right] . \qquad (26)$$

· This procedure is easier that computing & directly o

II,-17

Divergence and Gauss's Theorem

· Divergence of a Vector Function; =:

div
$$\vec{F} = 0$$
 in $\frac{1}{V_i \to 0} \int_{V_i} \vec{F} \cdot d\vec{a}$. (33) See Fig 2.12. and illustration on page 56-57.

· Gauss's Theorem (Divergence Theorem)

$$\int_{S} \vec{F} \cdot d\vec{a} = \int_{V} d\vec{v} \vec{F} d\vec{v} \qquad (36)$$

for any vector Field & and any closed & Surface "S" enclosing a volume "V"

This is a mathematical theorem.

 Gradient, Divergence, and Laplacian

· Scalar "G": $\vec{F} = \vec{\nabla} G$: Vector " \vec{F} " gradient

· Scalar "A": A = div F = P = F :

divergence

• In Cartesian coordinate, $\overrightarrow{\nabla}G = \cancel{2} \cancel{3} \cancel{G} + \cancel{2} \cancel{3} \cancel{G} + \cancel{2} \cancel{3} \cancel{G} + \cancel{2} \cancel{3} \cancel{G}$ For $\vec{F} = (F_X, F_Y, F_Z)$, $div \vec{F} = \frac{\partial F_X}{\partial X} + \frac{\partial F_Y}{\partial Z} + \frac{\partial F_Z}{\partial Z}$

· Laplacian; "divergence of gradient (of a scalar)

$$\operatorname{div-grad} G = \operatorname{div} \left(\hat{x} \frac{\partial G}{\partial x} + \hat{y} \frac{\partial G}{\partial y} + \hat{z} \frac{\partial G}{\partial z} \right) = G_{XZ}^{Z} + \frac{\partial^{Z}}{\partial yZ} + \frac{\partial^{Z}}{\partial z} \right) G$$

(in Carterian coordinates

To
$$\nabla G = \nabla^2 G$$

Laplacian.

Poisson's Equation

* Gauss's Law in differential form:

$$\operatorname{div} \stackrel{\stackrel{?}{=}}{=} 4\pi \rho$$

$$\operatorname{div}(-\operatorname{grad} \mathcal{G}) = -\stackrel{\stackrel{?}{=}}{=} -\stackrel{?}{=} \mathcal{G} = -\nabla^2 \varphi$$

$$\nabla^2 \mathcal{G} = -4\pi \rho : \operatorname{Poisson's Eguation} (50).$$

Physical content is the same as the Gauss's Law,
But it relates a scalar p" to another scalar g
directly.

* In cylindrical coordinates (P, 0, 2);

Curl of a Vector Function

II,-20

• (Curl
$$\overrightarrow{F}$$
)• $\overrightarrow{n} = l_{\overline{i}m}$ $\frac{T_i}{\alpha_i \Rightarrow 0} = l_{\overline{i}m}$ $\frac{S_{C_i} \cdot \overrightarrow{F} \cdot d\overrightarrow{I}}{\alpha_i}$ $\frac{1}{\alpha_i}$ \frac

Stokes' Theorem:

$$\int_{C} \vec{F} \cdot d\vec{l} = \int_{C} curl \vec{F} \cdot d\vec{a} \qquad (64)$$

where C is the curve which bounds a surface.

In Cartesian Coordinates,

Curl
$$\vec{F} = \vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{x} & \vec{y} & \vec{z} \\ \vec{\partial}_{x} & \vec{\partial}_{y} & \vec{\partial}_{z} \end{vmatrix} = \hat{\chi} (\vec{\partial}_{y} - \vec{\partial}_{z}) + \hat{\gamma} (\vec{\partial}_{z} - \vec{\partial}_{x})$$

$$= \begin{vmatrix} \vec{x} & \vec{y} & \vec{z} \\ \vec{\partial}_{x} & \vec{y} & \vec{z} \end{vmatrix} = \hat{\chi} (\vec{\partial}_{y} - \vec{\partial}_{z}) + \hat{\gamma} (\vec{\partial}_{z} - \vec{\partial}_{x})$$

$$= \begin{vmatrix} \vec{x} & \vec{y} & \vec{z} \\ \vec{\partial}_{x} & \vec{y} & \vec{z} \end{vmatrix} = \hat{\chi} (\vec{\partial}_{y} - \vec{\partial}_{z}) + \hat{\gamma} (\vec{\partial}_{z} - \vec{\partial}_{x})$$

* For electrostatic field \vec{E} , $\vec{E} = -\vec{\nabla} \mathcal{G}$, then Curl $\vec{E} = -\vec{\nabla} \times \vec{\nabla} \mathcal{G} = 0$, everywhere. (75)

(Note that Curlograd of any scalar field = 0:
mathematical identity).

One can see <u>not</u> all of vector fields in Fig 2.30 can be an electrostatic field. E.

Homework

Problems 2.8, 2.11, 2.12, and 2.16,

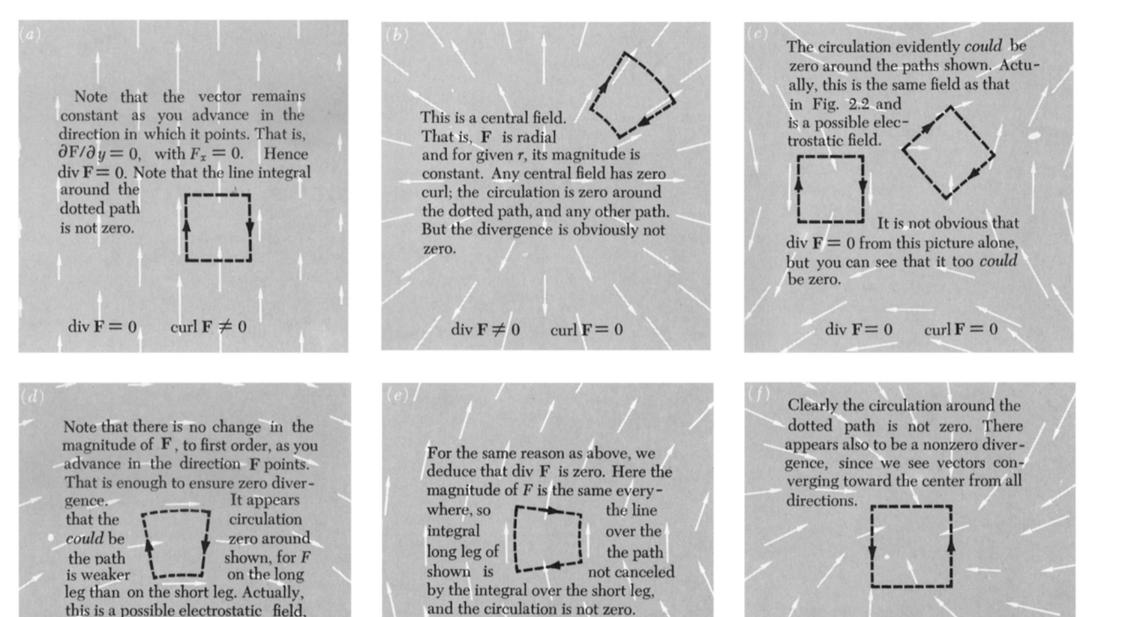


FIGURE 2.32 Discussion of Fig. 2.30.

 $\operatorname{curl} \mathbf{F} \neq 0$

 $\operatorname{div} \mathbf{F} = 0$

 $\operatorname{curl} \mathbf{F} \neq 0$

 $\operatorname{div}\mathbf{F}\neq0$

with F proportional to 1/r, where r is the distance to a point outside

 $\operatorname{curl} \mathbf{F} = 0$

the picture.

 $\operatorname{div} \mathbf{F} = 0$