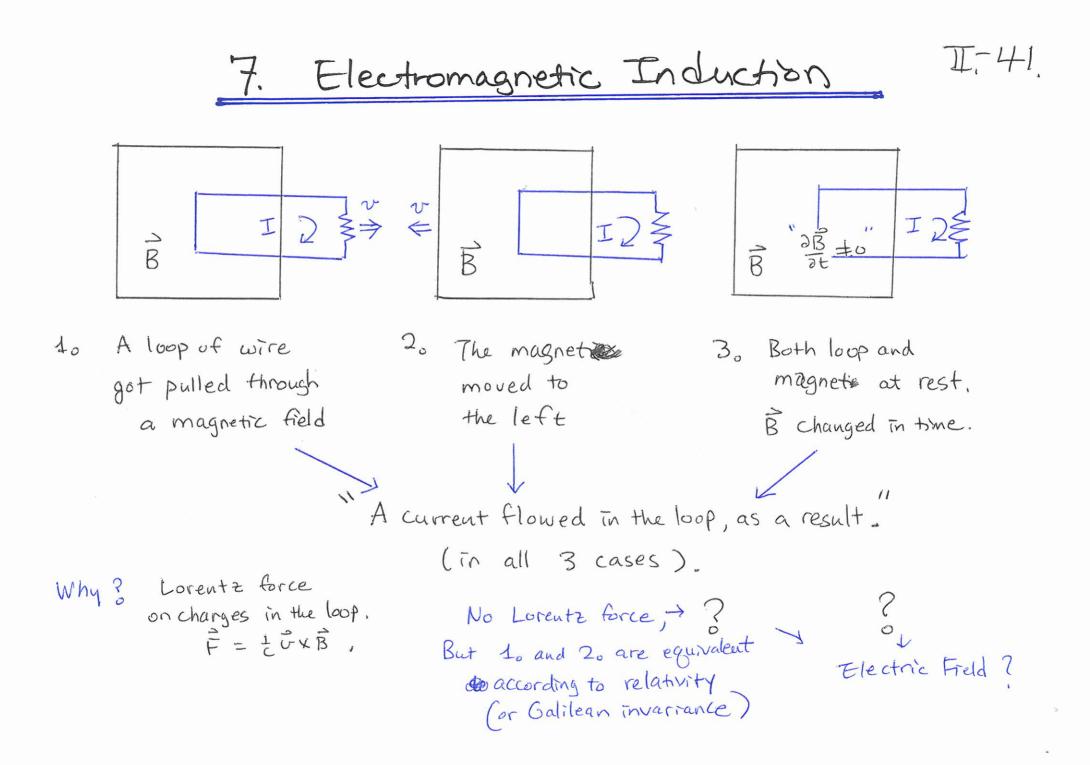
Fundamentals of Engineering Physics 2019

Week 8.



Faraday's Law of Induction II-42.

$$E = \int_{C} \vec{E} \cdot d\vec{s} = -\frac{1}{c} \frac{d}{dt} \vec{\Phi} = -\frac{1}{c} \frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{a}, \quad (25)$$
where C is a closed, stationary curve.
S is a surface spanning C.
Since $\int_{C} \vec{E} \cdot d\vec{s} = \int_{S} curl \vec{E} \cdot d\vec{a}$ from Stokes' theorem,

$$curl \vec{E} = -\frac{1}{c} \frac{\partial}{\partial t} \vec{B} \qquad (30)$$
* A changing magnetic field induces an electric field!
[Units]: $\frac{1}{cm} = \frac{\text{Stat volts}}{cm} = \frac{\text{Sec}}{cm} = \frac{\text{gauss}}{\text{Sec}}$

Displacement Current

1-44

Maxwell's Equations

I-45

- $Curl \vec{E} = -\frac{1}{C} \frac{\partial \vec{B}}{\partial t}$ • $Curl \vec{B} = \frac{1}{C} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{C} \vec{J}$
 - $div \vec{E} = 4\pi\rho$ • $div \vec{B} = 0$ (no magnetic monopole).

These equations are compatible with the special relativity (can be applied to IVI/2 41).

Electromagnetic Waves IF-46.
The empty space with
$$\rho = 0$$
 and $\hat{J} = 0$,
 $curl \vec{E} = -\frac{1}{2} \frac{\partial \vec{R}}{\partial t}$, $div \vec{E} = 0$
 $curl \vec{B} = \frac{1}{2} \frac{\partial \vec{E}}{\partial t}$, $div \vec{B} = 0$
We will learn later, in this dass, that these equations \vec{m}
(an be reduced to the wave equations for \vec{E} and \vec{B}_{o}
* A particular example of the solutions satisfying Eq.(16) \vec{m}
 $\vec{E} = \hat{z} E_0 \sin(y - vt)$ (17)
 $\vec{B} = \hat{x} B_0 \sin(y - vt)$ (18)
 $\rightarrow propagation in y direction$
with a speed " v ".

· Properties of Electromagnetic Waves II-47. ● By substituting the expressions for È qual B in ((7) and (18) = to Eqs (16), we find the following conditions that must be satisfied. • U = ± C and Bo = Eo (In (GS) (21) The field pattern travels with speed C". At every point in the wave at any instant in time, the electric and magnetic strengths are equal. (*) The electric field and magnetic field are perpendicular to one another and to the direction of propagation. See Fig 9.7 for an illustration

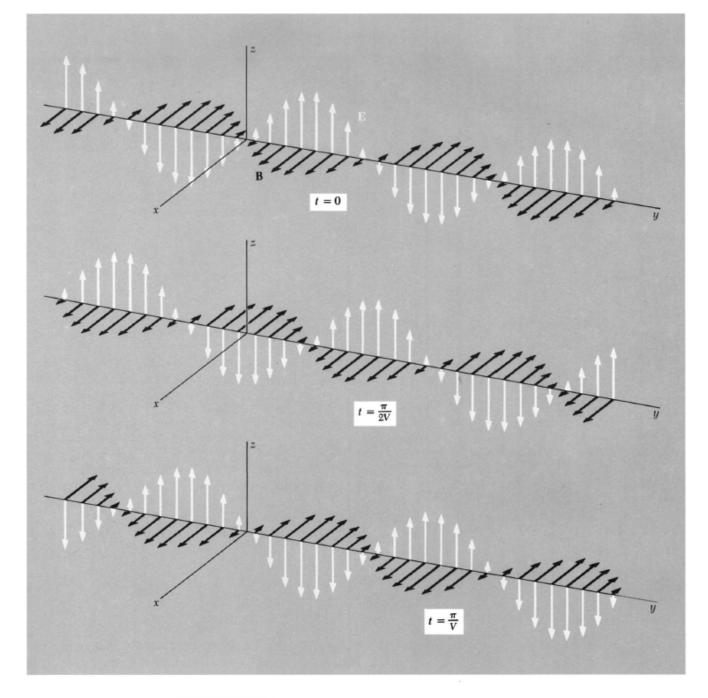


FIGURE 9.7

The wave described by Eqs. 17 and 18 is shown at three different times. It is traveling to the right, in the positive y direction.

$$\frac{Two \ counter - propagating Waves \rightarrow Standing Wave}{II-48}$$

$$\frac{T}{E_{1}} = \frac{2}{E_{0}} \sin \frac{2\pi}{\lambda} (y - ct) , \quad \vec{B}_{1} = \hat{x} E_{0} \sin \frac{2\pi}{\lambda} (y - ct) , \quad (23)$$
is a solution of Eq. (16) [Maxwell's Equs in empty space].
Note that
$$\frac{\vec{E}_{2}}{\vec{E}_{2}} = \frac{2}{E_{0}} \sin \frac{2\pi}{\lambda} (y + ct) , \quad \vec{B}_{2} = -\hat{x} E_{0} \sin \frac{2\pi}{\lambda} (y + ct) , \quad (24)$$
is also a solution of Eq. (16).
(23) : propagation in '+y' direction , (24): propagation in ''-y' direction

$$\frac{\vec{E}_{2}}{\vec{E}_{1}} = \vec{E}_{1} + \vec{E}_{2} = \cdots = 2 \frac{2}{2} \vec{E}_{0} \sin \left(\frac{2\pi y}{\lambda}\right) \cos \left(\frac{2\pi ct}{\lambda}\right) \qquad (26)$$
is also a solution describing a standing wave :

XXX The next subject is WAVES."

五-49

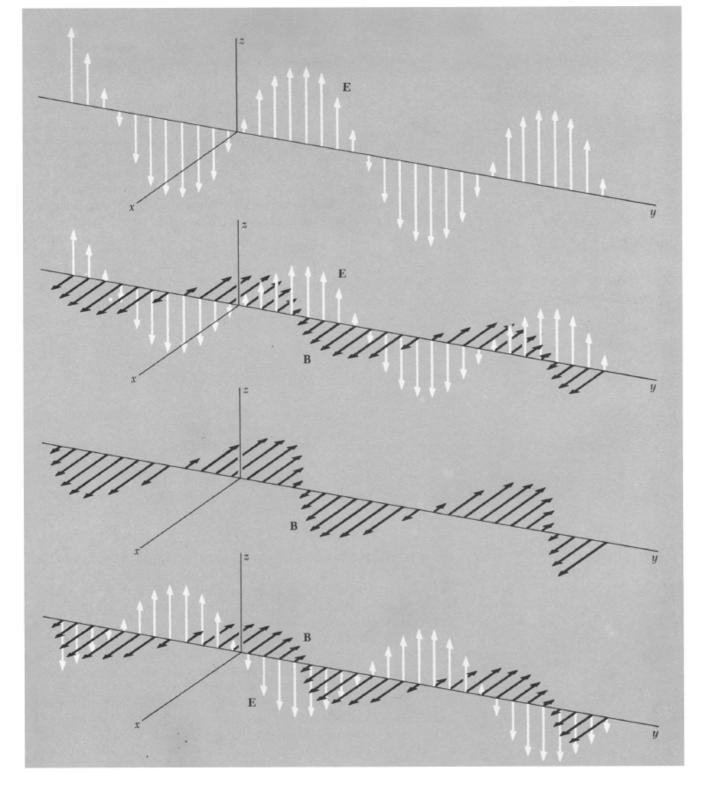


FIGURE 9.9

A standing wave, resulting from the superposition of a wave traveling in the positive y direction (Eq. 23) and a similar wave traveling in the negative y direction (Eq. 24). Beginning with the top figure, the fields are shown at four different times, separated successively by one-eighth of a full period.

Waves: Ch.4. Travelling Waves

(> Harmonic Travelling waves in one dimension and phase velocity.

- Consider a one-dimensional system consisting of a Continuous, homogeneous string stretching from Z=0 to infinity,
- We wish to find a displacement \$\P(z.t) of a moving part located at position Z, 052<0.
 The displacement of the string at 2 = 20 be given by let
 \$\P(o,t) = D(t) = A cos(wt), (2)\$
 Then, the displacement will travel with a constant

velocity from Z=0 to Z > infinity.

- V(z.t) will describe a harmonic travelling wave.

11-1

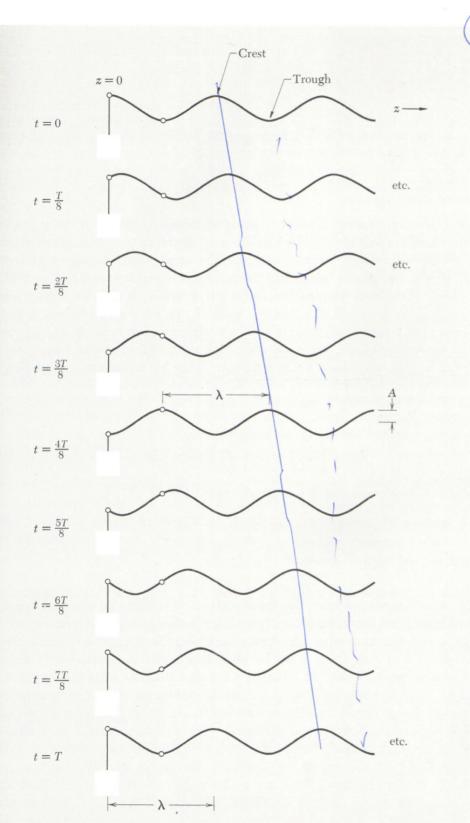


Fig. 4.1 Driving force at z = 0 describes harmonic motion of period T. Sinusoidal traveling wave propagates in +z direction. The wavelength is λ . The phase velocity is $\lambda/T = \omega/k = \lambda \nu$. Every point on the string undergoes the same harmonic motion as that at z = 0, but at a later time.

3

0

0

0

1.-3 * Since the motion of a moving part at position 2 at time t must be the same as that of the moving part at Z=0 at the earlier time t', with t and t' related by $t' = t - \frac{z}{v_o} ,$ (3) where Vip is called the phase velocity." * Thus, $\Psi(z,t) = \Psi(o,t') = A\cos(\omega t') = A\cos(\omega t - \frac{z}{2})$ $= A \cos \left(\omega t - \frac{\omega}{\nu_0} t\right)$ (4) The, harmonic escillation in time at fixed 2, and sinusoidal " in space at fixed to * We can recognize that K (wave number) = why by writing Eq. (4) as $\psi(t,t) = A\cos(\omega t - kz)$ (6)

11.-4 Phase Velocity (8a) Since W=2TIV $K = \frac{2\pi}{\lambda}$ w: angular frequency, (>= frequency, n= wavelength) (8b)ひゅ = ノン and T = l/y, T: period . (80) $v_{\varphi} = \lambda / T$ The argument "ot-kz" in Eq. (6) is called the phase, g(2,t). * Then, we can notice that "the point of constant phase" (eg., the wave crest (maximum of cos (p(z,t)) or the wave trough (minimum of ")) travels with a speed vg ! $d\varphi = \left(\underbrace{\Im}_{f} \right) dt + \left(\underbrace{\Im}_{f} \right) dz = W dt - k dz = 0,$ -(10) $\int \mathcal{V}_{\varphi} \equiv \begin{pmatrix} d_{z} \\ d_{t} \end{pmatrix}_{[d_{\varphi=0}]} = \mathcal{W}_{k}.$ (1)

· Phase velocity of Sound Waves - Newton's Model

* Suppose air is confined in a closed cylindrical container.

-> the air acts like a compressed spring extending along the cylinder [See Fiz, 4:2 on page 165] * dF = A dp = A (dp) A dL (For a spring, dF = - K_dL, with KL the spring constant). $v^2 = \frac{\text{Tension}}{\text{Po}(\text{line mass})} = \frac{\text{KLLo}}{\text{Po}(\text{line})}$ - (31)

11-5

Since
$$K_{L} = -A^{2} \left(\frac{dP}{dV}\right)_{g}$$
 and $\mathcal{C}(Ime) L_{0} = \mathcal{C}(volume) AL_{0}$,
spring air
 $\mathcal{U}^{2} = -\frac{V_{0} \left(\frac{dP}{dV}\right)_{0}}{\mathcal{C}_{0}}$ "Velocity of Sound" (33)
- Newton further used the Boyle's (aw; $PV = P_{0}V_{0}$
 $\rightarrow V_{Newton} = \sqrt{\frac{P_{0}}{\mathcal{C}_{0}}}$ (36)
- But, the Boyle's law applies to the isothermal process
Addiebatic gas law" which applies with processes with "no heat exchange".
 $is a better assumption, $PV = P_{0}V_{0}$
 $\Rightarrow V_{Sound} = \sqrt{\frac{P_{0}}{\mathcal{C}_{0}}}$ (40).
 $\gamma = 5I_{3}$.
 $\gamma = 5I_{3}$.$