Fundamentals of Engineering Physics 2019

Week 9.

(3)

- * Superposition of two harmonic oscillations to give amplitude-modulated oscillation:
 - * Let's consider a one-dimensional string extending from ± 20 to $\pm \infty$ again,

For
$$D(t) = A\cos(\omega_i t) + A\cos(\omega_2 t)$$
, $= \psi(0,t)$, (2)

= Amad (t) · cos (wayst)

where A mod it) = 2 A cos (iwmod t); modulated amplitude (4)

with $\omega_{mod} = \frac{1}{2}(\omega_1 - \omega_2)$, $\omega_{avg} = \frac{1}{2}(\omega_1 + \omega_2)$

* In a linear, homogeneous system, each term in Eq.(2) will lead to different (independent) travelling wave respectively given by Ψ , (2.+) and Ψ 2(2.+).

```
TII -8
  * \psi(0,t) = D(t) = A \cos(\omega_1 t) + A \cos(\omega_2 t)
                                                                     (5)
                                  4, (o,t) 4210,t)

↓ € independently → ↓

                 as we learned \psi_1(z,t) \psi_2(z,t)
         41(Z,t) = A cos (wit-kiz), 42(Z,t) = Acos (wit-kiz)
* Then, using the Principle of Superposition,
         Ψ(z,t) = 4, (z,t) + 1/2 (z,t) = A cos (w,t-k,z) + Acos (w,t-k,z)
      Ψ(z,t) = Amod (z,t) cos (wargt-karg Z),
                                                                   (7)
           With A mod (Z,t) = 2A cos (Wmod t- Kmod Z)
                                                                  (8)
        with wmod = = (w,-w2), kmod = = (k,-k2)
                                                                  (9)
                \omega_{\text{Avg}} = \frac{1}{2} (\omega_1 + \omega_2), K_{\text{Avg}} = \frac{1}{2} (K_1 + K_2)
                                                                   (10)
```

* Suppose |w1-wz | << w1+wz and |K1-Kz | << K1+Kz,

The modulation wave crest [a place where Amod(Zit)=1] will travel with a velocity which keeps "(wmodt-kmodZ)" constant.

Now, $\omega = \omega(k)$; a dispersion relation.

By Taylor expanding Eq. (12) for small $\omega_1-\omega_2$ and k_1-k_2 , $v_{mod} = \frac{\omega(k_1) - \omega(k_2)}{k_1 - k_2} = \frac{d\omega}{dk}$ (15)

$$\star$$
 $v_g = \frac{dw}{dK}$

Group Velocity (16)

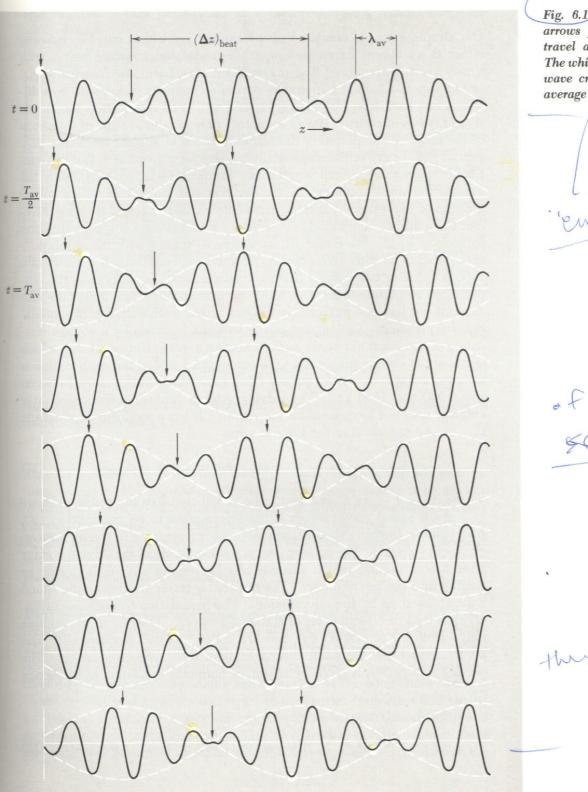


Fig. 6.1 Group velocity. The arrows follow the beats, which travel at the group velocity v_g . The white circles follow individual wave crests, which travel at the average phase velocity v_{av} .

Craw thus

scrests, troughs

the pocket prop. by

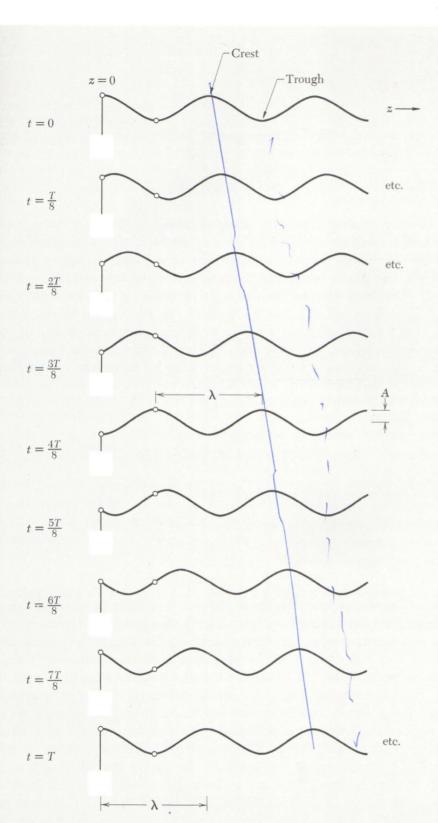


Fig. 4.1 Driving force at z=0 describes harmonic motion of period T. Sinusoidal traveling wave propagates in +z direction. The wavelength is λ . The phase velocity is $\lambda/T=\omega/k=\lambda\nu$. Every point on the string undergoes the same harmonic motion as that at z=0, but at a later time.

Group Velocity and Phase Velocity

亚二之、

- * If we superpose more number of harmonic waves, the wave packet will be more localized in space, the expression " $\nabla_{\varphi} = \frac{d\omega^{2}}{dk}$ remains valid.
 - * For some examples, $V_g < V_{\psi}$, some other, $V_g > V_{\psi}$ and sometimes $V_g = V_{\psi}$ depending on the dispersion relation

(w= w(k). Both a signal (information) and energy travel at

the Group velocity", not phase velocity.

* Eg., Sound Wave:
$$\omega = \sqrt{\frac{P_0}{P_0}} k$$
, \Rightarrow $v_{\varphi} = \frac{\omega}{K} = \sqrt{\frac{P_0}{P_0}}$ $v_{\varphi} = \frac{\omega}{K} = \sqrt{\frac{P_0}{P_0}}$

- @ EM wave in vacuum: w=ck > ve=vg=c.
- (3) EM wave in plasma (eg. ionosphere): $\omega^2 = \omega_p^2 + c^2 k^2$ (plasma wave) $\psi = \frac{\omega}{k} = \sqrt{c^2 + \omega_{pk}^2} > c$, but $v_g = c^2/v_{\varphi} \le c$.

Maxwell's equation in vacuum;

$$\vec{\nabla} \cdot \vec{E} = 0$$
 , $\vec{\nabla} \cdot \vec{B} = 0$

(77.a;b)

(2) Classical Wave Equation:

$$\frac{\partial^{2}}{\partial t^{2}}\vec{E} = \frac{\partial}{\partial t}\left(\vec{C}\vec{\nabla}\vec{X}\vec{B}\right) = \vec{C}\vec{\nabla}\vec{X}\vec{E}\vec{B} = \vec{C}\vec{\nabla}\vec{X}(-\vec{C}\vec{\nabla}\vec{X}\vec{E})$$

$$\frac{\partial^{2}}{\partial t^{2}}\vec{E} = \frac{\partial}{\partial t}\left(\vec{C}\vec{\nabla}\vec{X}\vec{B}\right) = \vec{C}\vec{\nabla}\vec{X}(-\vec{C}\vec{\nabla}\vec{X}\vec{E})$$

$$= c^{2}\left(\vec{\nabla}^{2}\vec{E} - \vec{\nabla}(\vec{\nabla}^{2}\vec{E})\right)$$

(79, a)

 $\frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = \nabla^2 \vec{E}$

This consists of 3 separate (79.9)
PDE's for Ex, Ey and Ez

Similar procedure will lead to

$$\frac{1}{c} \frac{\partial^2}{\partial t^2} \vec{B} = \nabla^2 \vec{B}$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
in Cartesian coordinate.

- to be along Z.
- 2. None of the components of Eor B depends on either of transverse coordinates x and y.
- 3. We can show that Ez and Bz can be taken to be zero (Read page 356-357), i.e.,
 - "Electromagnetic Plane Waves are transverse waves."

 P. . Ê l 2 and B l 2.
- 4. $|\vec{E}| = |\vec{B}|$ in cgs unit. $\vec{E} \perp \vec{B}$ and $\vec{E} \times \vec{B}$ is in the direction of \vec{K} , (\hat{Z}) .

De Broglie Waves

- * Louis de Broglie proposed that moving objects (with mass)
 have wave characteristics as well as well-accepted particle nature.
 - This precedes (1924) an experimental demonstration (1927). cf. Particle property of light waves has been discovered in 1905.
- * Physical Meaning of the Wave Function: 4(x,+)
 - "The probability of experimentally finding the body described by the wave function if at the point is at the time t is proportional to the value of 1412 there at to "

two years later

Dispersion Relation for de Broglie Waves

Consider a pH in 1-d described by a wave function,
$$\Psi(z,t) = f(z) e^{-\tau \omega t} \qquad (1)$$

If the potential energy of the pH is constant in Z, the medium is homogeneous and f(z) can be expressed as a sinusoidal function of Kz;

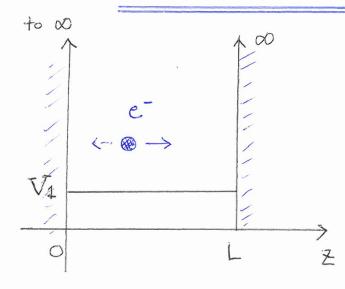
$$\psi(z,t) = \{A \sin(kz) + B \cos(kz)\} e^{-i\omega t}$$
(2)

*
$$E = \frac{p^2}{2m} + V$$
, (3) for a particle

From "E"= tiw"; Bohr frequency condition "P"= ti"k"; de Broglie wavenumber relation

 $\hbar \omega = \frac{\hbar^2 k^2}{2m} + V$, (4) for de Broglie waves,

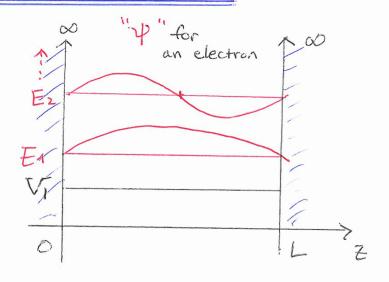
Electrons in a Box



According to classical mechanics, an electron's kinetic energy is and.

E can be any value

 $\geq V_1$.



According to quantum mechanics, an electron is described by a wave function y 12, 1) of the de Broglie wave. The allowed energy values are given by $E = t_1\omega = \frac{t_2k^2}{2} + V_1$ and only certain values are allowed corresponding to "k" values satisfying Boundary Conditions.

Quantization of K and E from Boundary Conditions

亚-18,

Probability of finding me electron at
$$\vec{x}$$
:

 $\psi = 0$ at $\vec{z} = 0$ and $\vec{z} = 0$ and $\vec{z} = 0$ are impenetvable

"Quantization of
$$\Rightarrow k_n = \frac{n\pi}{L}$$
, $n=1,2,...$

(6)

Since the probability of finding an et inside the box (somewhere) is "1"; $\int_0^L dz \left| \psi(z,t) \right|^2 = 1 \implies |A| = \sqrt{\frac{2}{L}} e^{ix}$

$$\psi_{n}(z,t) = \sqrt{\frac{z}{L}} e^{-i(\omega t - \alpha)} \sin kz \qquad (10)$$

@ Quantization of Energy Level

From the dispersion relation of de Broglie wave, (Eq. 14),

$$\omega_n = \omega_0 + \frac{t_1 k_n^2}{z_m}, \quad \omega_0 = \frac{V_1}{t_1}$$

* the corresponding electron's energy:

$$E_n = V_1 + \frac{\hbar^2 k_n^2}{2m} = V_1 + \frac{\hbar^2 (\frac{h \pi}{L})^2}{2m},$$
where $n = 1, 2, 3, ---$ (12)

only a set of discrete values allowed for energy, i.e., "quantized"!

called the Eigenvalues.

P_n(z,t) is called the eigenfunction.

(~ standing wave for this example of infinite wall .

Phase and Group Velocities of de Bruglie Waves

III-70.

Min ->

Consider an electron of energy E in a constant potential V, -> it satisfies the dispersion relation:

. The phase velocity is:

$$v_{\varphi}(k) = \frac{\omega}{k} = \frac{t_1k}{2m} + \frac{V}{t_1k}$$
 - wave packet:

- If we use the de Broglie wave number relation $P = \frac{1}{4} K$, $V = \frac{1}{2} \frac{P}{m} + \frac{V}{P}$, where P is a momentum of aptl.
- On the other hand, the group velocity is: $v_g = \left(\frac{d\omega}{dk}\right)$ $v_g = \frac{d\omega}{dk} = \frac{f_1k}{m} = \frac{P}{m}$ the same as the pthis velocity!

* Classical Wave Egn for EM waves: (light waves or photon)

"
$$\frac{1}{C^2} \frac{\partial^2}{\partial t^2} \vec{E} = \nabla^2 \vec{E}$$
."

Object.

This cannot describe the de Broglie wave for a massive particle

*
$$\psi(z,t) = e^{-i\omega t} (Ae^{ikz} + Be^{-ikz})$$
, in a region of constant potential.

"Dispersion Relation is an outcome of the underlying Wave Equation"

- We can deduce the Wave Equation from the dispersion relation.

$$t\omega = t^2 \frac{k^2}{2m} + V,$$

- Since " $i\frac{\partial}{\partial t}\psi = \omega\psi'$ and " $-\frac{\partial^2}{\partial z^2}\psi = K^2\psi''$ for ψ in Eq.(1)

The wave function if of the de Broglie wave satisfies.

*
$$i\hbar \frac{\partial}{\partial t} \psi(z,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} \psi(z,t) + \nabla \psi(z,t)$$

A

Schrödinger Equation

Equation (7) can be generalized to inhomogeneous potential $V(\vec{x})$ in three-dimensions:

it of
$$\psi(\vec{x},t) = -\frac{t^2}{2m} \nabla^2 \psi(\vec{x},t) + \nabla(\vec{x}) \psi(\vec{x},t)$$

Time-dependent Schrödinger Equation.

When the energy of an object does not vary in time, one can express the time-dependence of $\psi(\vec{x},t)$ as $\psi(\vec{x},t) = \psi(\vec{x})e^{-i\omega t}$

Then by removing the common factor "-i(\vec{k})+" = $\psi(\vec{x})$ = $i(\vec{k})$ +" = $\psi(\vec{x})$ = $\psi(\vec{x})$

Time-independent Schrödinger Equation.