Fusion Plasma Theory II. 2019

Week 13

Ch. 23. Kinetic Effects on Plasma Waves

- - -Unlike Drift-Kinetic Equation (which can be derived from the Vlasov equation), it contains the Lorentz force explicitly and it follows charged particles' trajectory in phase space. which is 6D.

23-1

Linearize with $f(x,v,t) = f_0(v) + Sf(x,v,t)$ (23,4) and SE(x,t) = SE(exp(-iwt+ikx)) (23,2). for one dimensional (in x) a uniform back ground, with $\vec{B}_0 = 0$.

23-2

$$\widehat{\bigoplus} \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x} \right) Sf - \widehat{\bigoplus} E \frac{\partial}{\partial v} f_0 = 0$$

$$(23.5).$$

$$for electrons.$$

$$\widehat{\bigoplus} For electron plasma udwes,$$

$$Poisson equation:$$

$$E_0 \vec{v} \cdot S\vec{E} = \sigma = -e \int Sf d^3 v$$

$$(23.6).$$

$$\widehat{o} In 4d, \quad E_0 \frac{\partial E}{\partial x} = -e \int_{-\infty}^{\infty} Sf dv.$$

$$(23.7).$$

$$Taking Sf(x, v, t) = Sf_{\phi}(v) \exp(-i\omega t + ikx),$$

$$(23.8).$$

$$Sf = \frac{ieSE}{m} = \frac{\partial}{\partial v} f_0$$

$$(23.10).$$

23-3

Substituting to Poisson equation, we get

$$T k \epsilon_0 S \tilde{E} = -e \int_{-\infty}^{\infty} S \tilde{f} dv = -i \frac{e^2 S \tilde{E}}{m} \int_{-\infty}^{\infty} \frac{\partial f_0}{\partial v} dv \qquad (23, 11),$$

$$D(k,\omega) = 1 + \frac{e^2}{mk\epsilon_0} \int_{-\infty}^{\infty} \frac{\partial f_0}{\partial \omega} d\nu = 0 \qquad (23.12)$$

 $D(k,\omega)$: Plasma Dispersion Function. (sometimes, plasma dielectric function) $D(k,\omega) = 0 \Rightarrow dispersion relation$

- for the case of electron plasma waves in an unmagnetized plasma.

While this is a solution, in principle, the integration is varely done analytically and exact.

23-4 23.3. Thermal Effects on Electron Plasma Waves. \bigcirc -Assume $\frac{\omega}{k} \gg v$, and expand $\frac{1}{\omega - kv} = \frac{1}{\omega} + \frac{kv}{\omega^2} + \frac{k^2v^2}{\omega^2} + \cdots$ Then, integrals in Eq. (22.8) can be carried out, $\int_{\infty}^{\infty} \frac{\partial f_0}{\partial v} dv = 0, \quad \int_{\infty}^{\infty} \frac{\partial f_0}{\partial v} v dv = -n$ $\int_{0}^{\infty} \frac{\partial f_{\sigma}}{\partial v} v^{2} dv = 0, \quad \int_{0}^{\infty} \frac{\partial f_{\sigma}}{\partial v} v^{3} dv = -3n v_{Te}^{2}, \quad (23.14)$ Yielding $D(k,\omega) \simeq 1 - \frac{\omega_{pe}}{\omega_{pe}} \left(1 + \frac{3k^2 \omega_{Te}}{\omega_{pe}} + \cdots\right) = 0$ (23,15)

where $\omega_{pe}^2 \equiv \frac{N_e e^2}{M_e E_0}$

Eq. (23.15) can be solved to the 1st order in

$$\frac{k^{2} \sigma_{Te}^{2}}{\omega^{2}}$$

$$\omega^{2} \approx \omega_{pe}^{2} + 3k^{2} \sigma_{Te}^{2}$$
(23.16)
electron planna thermal
wave corrections
Note that

$$\frac{2^{nd} \text{ term on RHS}}{4 \text{ st term ''}} \sim \frac{k^{2} \sigma_{Te}^{2}}{\omega^{2}} \sim \frac{k^{2} \sigma_{Te}^{2}}{\omega_{pe}^{2}}$$

$$\nabla k^{2} \lambda_{pe}^{2}, (Mee: Debye length.)$$
of This approximation is valid for long wavelength modes
with $k^{2} \lambda_{pe}^{2} <<1.$

Take
$$f_0(w) = \frac{1}{2}n \left[S(w-w_0) + S(w+w_0)\right]$$

delta functions. (23.17)
This is a crude model for counter-propagating
one dimensional cold beams.
(: no thermal spread)

Delta functions appearing in the integral with $\frac{2}{0}f_0$ can be
treated with integration by parts.
 $\int_{-\infty}^{\infty} \frac{3f_0}{0} \frac{1}{w-kw} dv = -\int_{-\infty}^{\infty} f_0 \frac{1}{2}w \left(\frac{1}{w-kw}\right) + \left[\frac{f_0}{w-kw}\right]_{-\infty}^{\infty}$
 $= -k \int_{-\infty}^{\infty} \frac{f_0}{0} \frac{1}{w-kw}^2 dv = -\frac{kh}{2} \left(\frac{1}{(w-kw_0)^2} + \frac{1}{(w+kw_0)^2}\right)$
from the property
of S ftm.

.

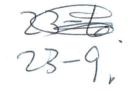
$$\Rightarrow D(k,\omega) = 1 - \frac{1}{2} \int \frac{(\omega pe^2)}{((\omega - kv_0)^2)^2} + \frac{(\omega pe^2)}{((\omega + kv_0)^2)^2} = 0$$
(23.19)

This is a quartic (the 4th order) algebraic eqn for "w". i. There must be 4 roots.

is For
$$k^2 v_0^2 > \omega_{pe}$$
, there are 4 real roots

and no instabilities.

is For
$$k^2 v_0^2 < w_{pe}^2$$
, there are 2 real roots
and 2 complex (with non-zero
imaginary part)
"two-stream instability." roots which are complex conjugates
of ane another.
=) one of those is an instability.



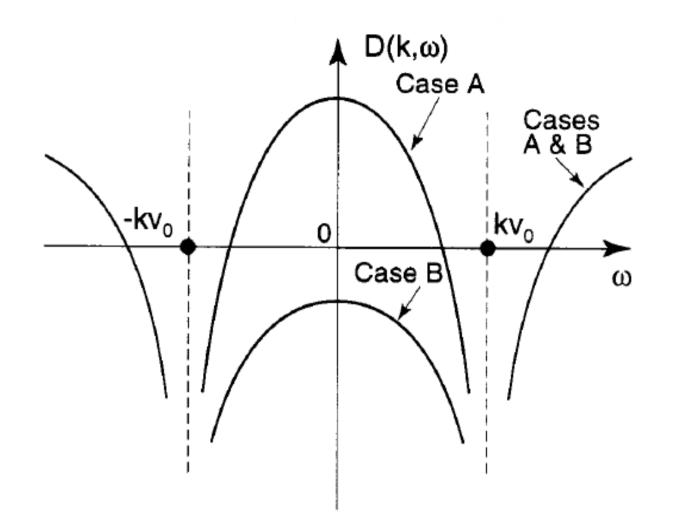


Figure 23.1. The dispersion function $D(k, \omega)$ for the two-stream instability plotted against ω for the Cases A (four real roots ω of $D(k, \omega) = 0$) and B (two real roots ω of $D(k, \omega) = 0$).



Dock for relectrostatic wave 'for which both ions and electrons are allowed to oscillate. Taking both species ' contribution to Poisson eqn into account, we have

$$D(k,w) = 1 + \sum_{\sigma} \frac{e_{\sigma}}{m_{\sigma}k \epsilon_{\sigma}} \int_{-\infty}^{\infty} \frac{\partial f_{\sigma\sigma}}{\partial w} dv = 0$$
 (23,20)

Solve for UFice (23,21),

Tor ions, $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial f_0}{\partial v} dv = -\frac{nk}{\omega^2} + \cdots \quad (23,23)$