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24.3 PHYSICAL MEANING OF LANDAU DAMPING

Physically, it is clear that Landau damping is associated with those particles in
the distribution that have a velocity nearly equal to the phase velocity of the
wave, w/k, since the contribution to the dispersion function, equation (24.18),
that gives rise to Landau damping 1s the term in (dfo/9v)|n/k. These may be
called ‘resonant particles’. Resonant particles travel along at almost the same
speed as the wave and tend to see a relatively static electric field, rather than a
rapidly fluctuating one. They can, therefore, exchange energy very effectively
with the wave.
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The electrons with v = w/k, which are nearly resonant with the plasma
wave in the Landau problem, are analogous to the resonant particles in the
mapping problem of Chapter 5. They see an essentially steady electric field,
which can be positive or negative depending on their phase relative to the wave.
Thus, some nearly resonant particles are accelerated by the wave, while others
are decelerated. A resonant individual particle has an equal chance of being
accelerated or decelerated, after averaging over all possible phases. Thus the
population of particles that was originally moving slightly faster than w/k is
mixed with the population that was moving slightly slower.

However, a Maxwellian distribution has more slower electrons than faster
ones. Consequently, there are more particles being accelerated on average by

this mixing process than being decelerated. Since this results in a net transfer
of energy from the wave to the particles, the wave is damped.
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As particles with velocities near the phase velocity w/k are speeded-up
or slowed down in this way by the wave, the distribution f(v) (averaged over
wave phase) tends to be ‘flattened’ in this region. Effectively, there arises a
wave-induced diffusion in velocity space, concentrated in the region around the
phase velocity w/k. The new, modified distribution function contains the same
number of particles, but 1t has gained a little energy at the expense of the wave.
Strictly, this flattening of the distribution function is a nonlinear effect, because it
1s quadratic in the amplitude of the perturbation. For infimitesimal perturbations,
the flattening would be imperceptible, but it is sufficient to account for the loss of
wave energy, which is also quadratic in the perturbation amplitude. For larger
wave amplitudes, such as those arising from unstable modes of perturbation,
wave-induced velocity diffusion can often be the dominant nonlinear effect, as
in the ‘quasi-linear theory’ discussed in the next Chapter.
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We saw in Chapter 16 and again in Chapter 23 (see Problem 23.3) that,
when finite-T; corrections are retained in the dispersion function, for kip < 1
the dispersion relation for ion acoustic waves remains w =~ kC;, but the sound
speed is modified to C; = [(T. + 3T;)/M]'/?, although this result was limited
still to the case T; « T, in the kinetic treatment of Chapter 23. If, nonetheless,
we use this result to obtain an order-of-magnitude estimate for the ion Landau
damping in the case T; &~ T., by substituting w/k = C, ~ 2(T/M)"/? into
the second term on the right-hand side on the first line of equation (24.33), we
obtain y/w ~ 0.2. Such a large value of the damping decrement, y, indicates

that the ion acoustic wave is essentially non-existent in such a plasma. *pg. 427





