Fusion Plasma Theory II. 2019

Week 4

Ch. 18. Low-frequency Waves in Magnetized Plasmas

IV-1.

18.1. Dielectric Tensor

- * For low frequency waves, ion dynamics has to be considered.
- * We will also consider fronte pressure and arbitrary angle of propagation

* Take
$$\vec{B}_0 = \vec{B}_0 \vec{2}$$
, $\vec{k} = k_x \vec{x} + k_z \vec{2}$, $= k \left(\sin \theta \hat{x} + \cos \theta \hat{z} \right)$

For each species, we have

mno
$$\frac{\partial}{\partial t} u_{1} = 2n_{0}(\vec{E}_{1} + \vec{u}_{1} \times \vec{B}_{0}) - \gamma T \vec{\nabla} n_{1}$$
 (18.1)

and
$$\vec{\nabla} \cdot (n_{0} \vec{u}_{1}) = -\frac{\partial}{\partial t} n_{1}$$
 (18,5)

$$\star \vec{J}_{1} = \sum_{sp} n_{sq} \vec{u}_{1} = \vec{6} \cdot \vec{E}_{1}$$
 (18,9)

* Wave Egn =

$$k^2 \vec{E}_1 - \vec{k} (\vec{k} \cdot \vec{E}_1) = (\frac{\omega}{c})^2 (\vec{E}_1 + \vec{i} \cdot \vec{j}_1 / \epsilon_0 \omega)$$

Di-electric tensor:

$$\stackrel{\leftarrow}{\epsilon} = \epsilon_o \left(\stackrel{\rightarrow}{I} + \stackrel{\rightarrow}{I} \stackrel{\rightarrow}{\sigma} / \epsilon_o \omega \right) \qquad (18,13)$$

By defining $X = I - kk/k^2$, the wave equation can be

written in a compact form,

$$(\omega^2 \mu_0 \stackrel{\leftarrow}{\epsilon} - k^2 \stackrel{\checkmark}{X}) \stackrel{\rightarrow}{\epsilon} = 0$$

(18,15)

* Eg (18.15) leads to the "warm" plasma dispersion relation.

18.2. The Cold-Plasma Dispersion Relation,

$$- \tilde{n} = C k / \omega = C / v_p, \Rightarrow C k / \omega = \tilde{n} (\sin \theta \vec{x} + \cos \theta \vec{z})$$

$$-R = 1 - \frac{\omega_p^2}{\omega(\omega - \omega_c)} - \frac{\Omega_p^2}{\omega(\omega + \Omega_c)}$$

$$- L = 1 - \frac{\omega \rho^2}{\omega(\omega + \omega c)} - \frac{\Omega \rho^2}{\omega(\omega - \Omega c)}$$

$$-S = \frac{R+L}{2}$$

$$-D \equiv \frac{R-L}{2}$$

$$-P = 1 - \frac{wp^2}{w^2} - \frac{\Omega p^2}{\omega^2}$$

* Homework: Problem 18,1 on page 288.

Determinant of (18,16) =0

$$\Rightarrow (S^{2}P - D^{2}P) - \tilde{n}^{2}(SP\cos^{2}\theta + SP + S^{2}\sin^{2}\theta - D^{2}\sin^{2}\theta)$$

$$+ \tilde{n}^{4}(P\cos^{2}\theta + S\sin^{2}\theta) = 0.$$

-> Two branches of Dispersion Relation

$$\Rightarrow$$

$$tan^{2}\theta = \frac{-P(\tilde{n}^{2}-R)(\tilde{n}^{2}-L)}{(S\tilde{n}^{2}-RL)(\tilde{n}^{2}-P)}$$

(18,24)

A useful form of cold-plasma P.R.

- For // propagation, $\theta = 0$ by definition. We have two solutions, $\tilde{n}^2 = R$ and $\tilde{n}^2 = L$ which are the right - and left-circularly polarized waves.
- For \bot propagation, $\tan^2\theta \to \infty$. We have two solutions, $\vec{n}^2 = \vec{P}$ and $\vec{n}^2 = \frac{RL}{S}$. O-wave X-wave

Note that ion dynamics are included via the definitions contributions from of R, L, S and Po

Resonances $\Rightarrow \vec{n} \rightarrow \infty$ ($k \rightarrow \infty$, $\lambda \rightarrow 0$), $\Rightarrow \tan^2 \theta = -P/S$, i.e., resonance freqs. vary with

* For 0 = T/2,

S>0 > upper and lower-hybrid resonances, including ion dynamics.

Cutoffs => We must go back to Eq. (18.18), to get PRL=0, $P=0 \rightarrow \omega_P$ cutoff of O-wave and Langmuir $R=0 \rightarrow \omega_R$ cutoffs with ion dynamics included, $L=0 \rightarrow \omega_L$

Ch 2 Ideal MHD Plasmas

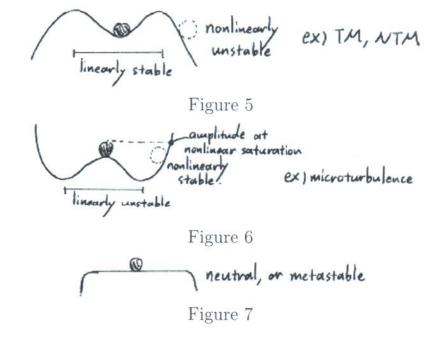
- MHD equilibrium $(\partial/\partial t \to 0)$

$$\mathbf{j}_0 \times \mathbf{B}_o = \nabla p_0 + \rho_0 (\mathbf{u}_0 \cdot \nabla) \mathbf{u}_0$$
 (34)

the sum of the forces acting on the plasma is zero - what happens if the plasma is perturbed from this state?

Figure 3

Figure 4



"Linear"

perturbation amplitude is infinitesimally small

 \Rightarrow ignore nonlinear terms (a product of more than two perturbed quantities)

In reality, we should consider a $\underline{\underline{\text{finite}}}$ (not infinitesimal!) amplitude perturbation.

- How do we formulate the ideal MHD stability (or instability) ? \Rightarrow Linearization

$$\rho = \rho_0 + \delta \rho; \text{ where } \delta \rho(\mathbf{x}, t) = \delta \rho(\mathbf{x}) e^{-i\omega t}$$

$$p = p_o + \delta p; \text{ where } \delta p(\mathbf{x}, t) = \delta p(\mathbf{x}) e^{-i\omega t}$$

$$\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B}; \text{ where } \delta \mathbf{B}(\mathbf{x}, t) = \delta \mathbf{B}(\mathbf{x}) e^{-i\omega t}$$

$$\mathbf{u} = \mathbf{u}_0 + \delta \mathbf{u}; \text{ where } \delta \mathbf{u}(\mathbf{x}, t) = \delta \mathbf{u}(\mathbf{x}) e^{-i\omega t}$$

$$= 0 \text{ for simplicity}$$

Linearized equations : every term has ONE perturbed quantity. Im $\omega>0$: exponential instability

 $e^{(\operatorname{Im}\omega)t} \nearrow \text{as } t \nearrow$ $\gamma \equiv \operatorname{Im}\omega$: linear growth rate

 $\gamma \equiv \text{Im}\,\omega$: linear growth rate $\text{Im}\,\omega < 0$: exponential stability.

Example MHD waves in <u>uniform</u> (i.e. both homogeneous and infinite) magnetic field and plasmas, then $\mathbf{B}_0 = B_0 \hat{\mathbf{e}}_z$, $\mathbf{J}_0 = 0$, $\mathbf{u}_0 = 0$, $\nabla p_0 = \nabla \rho_0 = 0$ Linearize the system of ideal MHD equations, assuming $\delta \mathbf{A}(\mathbf{x},t) = \delta \mathbf{A} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x}}$ with $\mathbf{k} = k_{\parallel}\mathbf{e}_z + k_{\perp}\mathbf{e}_y$ without loss of generality.

2.1 Waves in MHD Plasmas

$$\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{35}$$

$$\frac{d}{dt}\left(\frac{p}{\rho^{\gamma}}\right) = 0\tag{36}$$

$$\frac{\partial}{\partial t}\mathbf{B} = -\nabla \times \mathbf{E} = \nabla \times (\mathbf{u} \times \mathbf{B}) \tag{37}$$

$$\mu_0 \mathbf{j} = \mathbf{\nabla} \times \mathbf{B} \tag{38}$$

$$\rho \frac{d\mathbf{u}}{dt} = \mathbf{j} \times \mathbf{B} - \boldsymbol{\nabla} p \tag{39}$$

$$\nabla \delta(\cdots) \Rightarrow i\mathbf{k}\delta(\cdots), \ \partial/\partial t \Rightarrow -i\omega, \ \delta(\rho u_0) = 0 \text{ since we assumed } \mathbf{u}_0 = 0$$

$$-i\omega\delta\rho + \rho_0(i\mathbf{k}\cdot\delta\mathbf{u}) = 0 \qquad (40)$$

$$-i\omega\delta p + \gamma p_0(i\mathbf{k}\cdot\delta\mathbf{u}) = 0 \qquad (41)$$

$$-i\omega\delta\mathbf{B} + i\mathbf{k} \times (\delta\mathbf{u} \times \mathbf{B}_0) = 0 \qquad (42)$$

$$\mu_0\delta\mathbf{j} = i\mathbf{k} \times \delta\mathbf{B} \qquad (43)$$

$$-i\omega\rho\delta\mathbf{u} = \delta\mathbf{j} \times \mathbf{B}_0 + \mathbf{j}_0 \times \delta\mathbf{B} - i\mathbf{k}\delta p \qquad (44)$$

Equations (40)-(44) can be expressed in terms of $\delta \mathbf{u}$:

$$(\omega^{2} - k_{\parallel}^{2} v_{A}^{2}) \delta u_{x} = 0 (45)$$

$$(\omega^{2} - k_{\perp}^{2} c_{s}^{2} - k^{2} v_{A}^{2}) \delta u_{y} - k_{\perp} k_{\parallel} c_{s}^{2} \delta u_{z} = 0 (46)$$

$$-k_{\perp} k_{\parallel} c_{s}^{2} \delta u_{y} + (\omega^{2} - k_{\parallel}^{2} c_{s}^{2}) \delta u_{z} = 0 (47)$$

where $v_{\rm A} = (B_0^2/\mu_0 \rho_0)^{1/2}$: Alfvén speed

 $v_{\rm A} = (B_0/\mu_0\rho_0)^{1/2}$: Aliven speed $c_s = (\gamma p_0/\rho_0)^{1/2}$: (adiabatic) sound speed.

Homework Why equations (40)-(44) are expressed as 3×3 matrix in terms of $\delta \mathbf{u}$?

The eigenvalues of Equations (44)-(46) consist of:

$$\omega^2 = k_{\parallel}^2 v_{\rm A}^2 \cdots ({\rm I})$$

$$\omega^2 = \frac{1}{2}k^2(v_A^2 + c_s^2)[1 \pm (1 - \alpha^2)^{1/2}] \text{ where } \alpha^2 = 4(k_{\parallel}^2/k^2) \left| c_s^2 v_A^2/(c_s^2 + v_A^2) \right|^2$$

For $(2\mu_0 p_0/B_0^2 \equiv) \beta = c_s^2/v_A^2 \ll 1$, the last two solutions simplify.

$$\omega^2 \simeq k^2 v_{\rm A}^2 \cdots (II)$$

$$\omega^2 \simeq k_{\parallel}^2 c_s^2 \cdots (III)$$

For uniform plasmas $L \to \infty$, $1/L < 1/\lambda$ thus

$$\left| \frac{\nabla \text{ (equilibrium quantity)}}{\text{ (equilibrium quantity)}} \right| < \left| \frac{\nabla \text{ (perturbed quantity)}}{\text{ (perturbed quantity)}} \right|$$

Note that for every solution, $Re(\omega) \neq 0$ but $Im(\omega) = 0$. There is no instability.

This is because for a (: uniform plasma, there is no free energy source)

(I) Shear Alfvén Wave

It causes bending of **B**.

With $\mathbf{B}_0 = B_0 \mathbf{e}_z$, $\delta \mathbf{u}$ follows $\delta \mathbf{B}$, both perturbations are in x-direction.

Relatively low frequency wave, and can become easily unstable.

Note that $W_m \propto |\mathbf{B}|^2 = |\mathbf{B}_0|^2 + |\delta \mathbf{B}|^2$ since $\mathbf{B}_0 \cdot \delta \mathbf{B} = 0$.

Therefore, the increase of magnetic field energy W_m due to the field line bending is only a second order in $\delta \mathbf{B}$ (i.e. it doesn't cost much magnetic energy).

Many (almost all) examples of MHD instability in low- β tokamak are versions of shear Alfvén wave (i.e. $\omega^2 = k_{\parallel}^2 v_{\rm A}^2 + \cdots$).

IBM, RBM, TM, NTM, Kink, TAE, ...

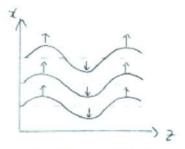


Figure 8 : Shear Alfvén wave

(II) Fast magnetosonic wave

In low- β limit plasmas, this becomes the compressional Alfvén wave. Since typically $|k_{\perp}| \gg |k_{\parallel}|$ in tokamaks (: $2\pi R_0 \gg 2a$ typically), $\omega_{\text{comp. Alfvén}}^2 \gg \omega_{\text{shear Alfvén}}^2$ This wave compresses magnetic field! $\delta \mathbf{B}_{\parallel}$ is non-zero, so the first order term in $|\mathbf{B}_0 + \delta \mathbf{B}|^2$ is non-zero. Therefore, it's generally harder to excite.

(III) Slow magnetosonic wave

In low- β plasmas, this becomes a sound wave.

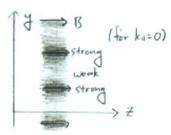


Figure 9 : Compressional Alfvén waves

This does *not* cause much of $\delta \mathbf{B}$. It exists even in the electrostatic limit. But this wave compresses plasmas. Many microinstabilities are versions of a sound wave.

Figure 10: Sound Wave

In low- β plasmas, typically, we have

$$k^2 v_{\rm A}^2 \gg k_{\parallel}^2 v_{\rm A}^2 \gg k_{\parallel}^2 c_s^2$$
 (48) (Compressional Alfvén) (Shear Alfvén) (Sound)