Fusion Plasma Theory Il. 2019

Week 5
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Resistive MHD Instability

Tearing Instability

e Ideal MHD instability is dangerous since it can grow in a short time
scale (eg. 7 ~ c¢s/y/LpR for pressure gradient driven interchange
instability)

e Even when plasma is stable to ideal MHD instability, there could be
slowly growing resistive MHD instability

e Resistive MHD instability can occur due to the fact that the con-
straint of the plasma and the magnetic field being frozen together in
ideal MHD is relaxed
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This is rather counter-intuitive since the resistivity is an example of “dis-
sipation”, and dissipation usually damps out perturbations. Indeed there
will be a damping effect from the resistivity, but this is dominated by other
effect which allows the perturbation to form a structure which can lower the
magnetic free energy by tearing and reconnecting the perturbed magnetic
field near the mode rational (resonant) surface without making too much
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field line bending.

Let’s review the MHD equations and shear Alfvénic perturbation.

0 1
p(aqu(u-Vu)) :_VP_EBX (V x B)

OB —Vx(uxB)+-1vB
ot o

If we linearize and assume very strong By, i.e., low-3, we obtain,

9 |
2 u=+—(B-V)iB
P ou +47T(B V)
9 5B = (By - V)ou + -Lv2%B
ot o

Without resistivity,
this 2 x 2 system yields the dispersion relation for shear-Alfvén wave:
d ) ;
— — —iw, By-V = iByk
ot ‘
Bj

= w? = kfﬁ va with 03 = =%
dmp



e ’U'
Now, by including of the resistivity,
with V2 > Vﬁ (A > AL) and V2 = —k? | The dispersion relation becomes
" oM By 99
w(w +i—Fk1) = kjvy
Ho

= resistivity induces a very small damping o “n”.
The second counter-intuitive result is that the resistive instability can grow

in much shorter time scale than the magnetic field diffusion time!
. It7s still less dangerous than ideal MHD instability, but cannot be ignored.

‘ For By = 5T, n. = 10®m=3, T, = 5keV, a = 1m ‘
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Resistive diffusion time : 7r = ppa®/n = 10 minutes
Alfvén transit time : 75 = a/vp = 0.1 usec
= (~ Tg/ STi’J 5) : ~70ms =  “Relevant”

Mtearing mode

This problem is non-trivial, and a prime example of elaborate boundary
layer problem.

1. Solve ideal MHD equation away from the mode rational surface.
(Outer solution)
Here both inertia (~ w) and resistive diffusion(~ 1d?) are negligible.
Only the quantity A’ characterizes the free energy associated with
Jo(r) -

2. Solve resistive MHD equation near mode rational surface.
Here both nd? and inertia should be kept.
(Inner solution depends on w and 7.)

3. Asymptotic matching (at an intermediate region not just a position):
z — +0 behavior of outer solution
r — +oc¢ behavior of inner solution



Ideal MHD breaks down badly near mode rational surface, and we need to
consider magnetic field diffusion (1/pg) 6% 6B.

The growth rate of classical tearing mode is as follows.
~ o 73/5 A5

(Unstable when A’ > 0.) We can see that v 7 as A’ .
This is one of the classic results from plasma theory.
[Furth, Killeen and Rosenbluth, Phys. Fluids 6, 459 (1963)]

Resistive diffusion term (n/uo) 8% 6B is non-negligible despite 7 < 1, since

0

P S as ¢ — 0.
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