
J. Y. Choi. SNU

Summary Questions of the lecture

1

 Explain the key aspects of GAT: Graph Attention Networks.

→GAT aggregates the transformed feature vectors of neighbor nodes Θℎ𝑗
(𝑙)

by

weighting them with attention. The attention weights are generated by

applying softmax across the compatibility scores of neighbor nodes:

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[Θℎ𝑖
(𝑙)
||Θℎ𝑗

(𝑙)
]). Note that 𝑎 and Θ are learnable parameters.

J. Y. Choi. SNU

Summary Questions of the lecture

2

 Explain the key aspects of gPool: Graph U-Nets.

→Graph U-Nets downsamples the graph using gPool, upsamples it using gUnpool,

and transforms graph features with the simplified ChebNet. Specifically, gPool

downsamples a given graph (𝑋𝑙 , 𝐴𝑙) by selecting the top 𝑘 most

important nodes. The importance scores 𝑦 are generated by multiplying a

learnable parameter vector (1 × 1 convolution filter) 𝑝 to 𝑋𝑙 and normalizing it.

The scores are also used to gate the graph signals of the selected nodes to

generate the output graph signals. gUnpool simply restores the graph back to its

previous structure.

Graph U-Nets downsample the graph using gPool, upsamples it using gUnpool, and transforms graph features with the simplified ChebNet. Specifically, gPool downsamples a given graph (Xl,Al) by selecting the top k most

J. Y. Choi. SNU

Summary Questions of the lecture

3

 Explain the key aspects of DiffPool: Hierarchical Graph Representation

Learning with Differentiable Pooling

→DiffPool first embeds the input graph 𝑋 to 𝐻 through the simplified ChebNet

operation. Then, it generates a soft assignment matrix 𝑆 through another

simplified ChebNet operation, but this time its output is normalized with the

softmax. Since 𝑆 provides the probability matrix for each node being assigned

to each cluster, the input graph can be pooled with 𝐻𝑝 = 𝑆𝑇𝐻 and 𝐴𝑝 = 𝑆𝑇𝐴𝑆.

J. Y. Choi. SNU

Summary Questions of the lecture

4

 Explain the key aspects of EigenPooling: Graph Convolutional Networks

with EigenPooling

 EigenPooling first clusters the input graph by directly adopting Laplacian

clustering. Then, within each cluster's sub-graph, the node features are

smoothed by applying a hard low pass filter in the spectral domain. The

resulting sub-graph feature vectors are averaged to obtain the feature

vector of a representative node for each sub-graph.

J. Y. Choi. SNU

Outline of Lecture (4)

5

 Spatial GCN

 Spatial View of Simplified ChebNet

 GraphSage (Hamilton et al. NIPS 2017)

 GAT : Graph Attention (Veličković et al. ICLR 2018)

 MPNN: Message Passing (Glimer et al. ICML 2017)

 gPool: Graph U-Nets (Gao et al. ICML 2019)

 DiffPool: Differentiable Pooling (Ying et al.

NeurIPS 2018)

 EigenPooling: EigenPooling (Ma et al. KDD 2019)

 Link Analysis

 Directed Graph

 Strongly Connected Graph

 Directed Acyclic Graph

 Link Analysis Algorithms

 PageRank (Ranking of Nodes)

 Personalized PageRank

 Random Walk with Restarts

 Propagation using graph diffusion
 Predict Then Propagate [ICLR’19]

 Graph Diffusion-Embedding Networks [CVPR’19]

 Making a new graph
 Diffusion Improves Graph Learning [NIPS’19]

 Graph Learning-Convolutional Nets. [CVPR’19]

J. Y. Choi. SNU 6

Link Analysis
PageRank, Directed Graph (Web, Epidemic),

Random work, Teleporting, ….

 Machine Learning with Graphs, Jurij Leskovec, Stanford University

 Recent papers

http://web.stanford.edu/class/cs224w/

J. Y. Choi. SNU

Directed Graph

7

Web Pages Citations

paper
cite

web page

hyperlink

J. Y. Choi. SNU

Directed Graph

Directional Node Set: 𝐼𝑛 𝑣 , 𝑂𝑢𝑡 𝑣

𝐼𝑛 𝑣 = 𝑤 𝑤 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑣}

𝑂𝑢𝑡 𝑣 = 𝑤 𝑣 𝑐𝑎𝑛 𝑟𝑒𝑎𝑐ℎ 𝑤}

8

Graph structure in the Web, computer networks (Broder et al. 2000), 4078 cites

𝐼𝑛 𝐴 = 𝑤 𝐴, 𝐵, 𝐶, 𝐸, 𝐺}
𝑂𝑢𝑡 𝐴 = 𝑤 𝐴, 𝐵, 𝐶, 𝐷, 𝐹}

http://snap.stanford.edu/class/cs224w-readings/broder00bowtie.pdf

J. Y. Choi. SNU

Directed Graph

Two types of directed graphs:

 Strongly connected:
 Any node can reach any node via a directed path

In(A)=Out(A)={A,B,C,D,E}

 Directed Acyclic Graph (DAG):
 Has no cycles: if 𝑢 can reach 𝑣, then 𝑣 cannot reach 𝑢.

Any directed graph (the Web) can be expressed in terms of these two types!

 Is the Web a big strongly connected graph or a DAG? No.

9

J. Y. Choi. SNU

Directed Graph

A Strongly Connected Component (SCC) in a graph is a set of nodes 𝑆 so that:

 Every pair of nodes in 𝑆 can reach each other

 There is no larger set containing 𝑆 with this property

10

Strongly Connected

Components in the graph:

{𝐴, 𝐵, 𝐶, 𝐺}, {𝐷}, {𝐸}, {𝐹}

J. Y. Choi. SNU

Directed Graph

Fact: Every directed graph is a DAG on its SCCs

① SCCs partitions the nodes of 𝐺, where each node is in exactly one SCC

② If we build a graph ҧ𝐺 whose nodes are SCCs, and with an edge between
nodes of ҧ𝐺 , and there is an edge between any two of SCCs in 𝐺, then ҧ𝐺 is
a DAG

11

① Strongly Connected Components in

the graph 𝐺: 𝐴, 𝐵, 𝐶, 𝐺 , 𝐷 , 𝐸 , 𝐹
② ҧ𝐺 is a DAG

ҧ𝐺

J. Y. Choi. SNU

Directed Graph

Computational issue:
 Want to find a SCC containing node 𝑣?

Observation:
 𝑂𝑢𝑡(𝑣) … nodes that can be reached from 𝑣

 𝐼𝑛(𝑣) … nodes that can reach to 𝑣

 SCC containing 𝑣 is:

𝑂𝑢𝑡(𝑣) ∩ 𝐼𝑛(𝑣) = 𝑂𝑢𝑡(𝑣, 𝐺) ∩ 𝑂𝑢𝑡(𝑣, ෘ𝐺),

where ෘ𝐺 is 𝐺 with all edge directions flipped

12

E

𝑣
B

C

F

D
G

E

𝑣
B

C

F

D
G

𝑂𝑢𝑡(𝑣)

𝐼𝑛(𝑣)
𝑺𝑪𝑪(𝑣)

J. Y. Choi. SNU

Directed Graph

Altavista web crawl, Graph structure in the Web, Broder et al., 2000
 203 million URLs, 1.5 billion links

Computation:
 Compute 𝐼𝑛(𝑣) and 𝑂𝑢𝑡(𝑣) by starting at random nodes.

 Observation: The BFS(breadth-first search) either visits many nodes or very few.

Result: Based on 𝐼𝑛 and 𝑂𝑢𝑡 of a random node 𝑣:
 𝑂𝑢𝑡(𝑣) ≈ 100 million (50% nodes)

 𝐼𝑛(𝑣) ≈ 100 million (50% nodes)

 Largest 𝑆𝐶𝐶: 56 million (28% nodes)

What does this tell us about the conceptual picture of the Web graph?

13

http://snap.stanford.edu/class/cs224w-readings/broder00bowtie.pdf

J. Y. Choi. SNU

Ranking Nodes on the Graph

All web pages are not equally “important”
Harmful Site vs. Seoul National University

There is large diversity in the web-graph
node connectivity.

So, let’s rank the pages using the web graph
link structure!

14

J. Y. Choi. SNU

Link Analysis Algorithms

We will cover the following Link Analysis approaches to

compute the importance of nodes in a graph:

 PageRank

 Personalized PageRank

 Random Walk with Restarts

15

J. Y. Choi. SNU

Link as Votes

Idea: Links as votes
 Page is more important if it has more links

 In-coming links? Out-going links?

Think of in-links as votes:
 Seoul National University has 20,000 in-links per day

 Harmful Site has 2 in-links per day

Are all in-links equal?
 Links from important pages count more

 Recursive question! (Importance propagation)

16

J. Y. Choi. SNU

PageRank: The ‘Flow’ Model

A “vote” from an important page is worth

more:

 Each link’s vote is proportional to the

importance of Its source page

 If page 𝑖 with importance 𝑟𝑖 has 𝑑𝑖 out-links,

each link gets 𝑟𝑖/𝑑𝑖 votes

 Page 𝑗’s own importance 𝑟𝑗 is the sum of the

votes on its in links

17

J. Y. Choi. SNU

PageRank: The ‘Flow’ Model

 A page is important if it is pointed by other

important pages

 Define a “rank” 𝑟𝑗 for node 𝑗

𝑟𝑗= σ𝑖→𝑗
𝑟𝑖

𝑑𝑖
,

where 𝑑𝑖 is out-degree of node 𝑖.

 ‘Flow’ equations:

𝑟𝑦=
𝑟𝑦

2
+

𝑟𝑎

2
→ 𝑟𝑦= 𝑟𝑎

𝑟𝑎=
𝑟𝑦

2
+ 𝑟𝑚 → 𝑟𝑎= 2𝑟𝑚

𝑟𝑚 =
𝑟𝑎

2
→ 𝑟𝑚=

𝑟𝑎

2

18

Gaussian elimination to solve this

system of linear equations.

Bad idea!

J. Y. Choi. SNU

PageRank: Matrix Formulation

19

J. Y. Choi. SNU 20

eigenvector for 𝜆 = 1 of M

J. Y. Choi. SNU

PageRank: Eigenvector Formulation

 Given a web graph with 𝑁 nodes, where the nodes are pages and

edges are hyperlinks

 Power iteration: a simple iterative scheme

 Initialize: 𝒓(0) =
𝟏

𝑵
, … ,

𝟏

𝑵

𝑻
.

 Iterate: 𝒓(𝑡+1) = 𝑴𝒓(𝑡) 𝑟𝑗= σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 Stop when 𝒓(𝑡+1) − 𝒓(𝑡)
1
< 𝜖

where 𝒙 1 = σ1≤𝑖≤𝑁 𝑥𝑖 and we can use any other vector norms.

 About 50 iterations are sufficient to estimate the limiting solution

21

J. Y. Choi. SNU 22

J. Y. Choi. SNU

PageRank: How to solve?

R: Given a web graph with 𝑁 nodes, where the nodes are pages and

edges are hyperlinks

 Initialize: 𝒓(0) =
𝟏

𝑵
, … ,

𝟏

𝑵

𝑻
.

 Iterate: 𝒓(𝑡+1) = 𝑴𝒓(𝑡) ← 𝑟𝑗= σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 Stop when 𝒓(𝑡+1) − 𝒓(𝑡)
1
< 𝜖

where 𝒙 1 = σ1≤𝑖≤𝑁 𝑥𝑖 and we can use any other vector norms.

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?

23

J. Y. Choi. SNU

PageRank: Problems

Two problems:

(1) Some pages are dead ends

 Such pages cause importance to “leak out”

(2) Spider traps (all out-links are within the group)

 Eventually spider traps absorb all importance

24

J. Y. Choi. SNU

PageRank: Does this converge?

The “Spider trap” problem:

Example:



Iteration

𝑟𝑎
𝑟𝑏

→

0

1
0

ተ

1

0
1

2

0
1

ተ

3

0
1

……

25

𝑟𝑗=෍
𝑖→𝑗

𝑟𝑖
𝑑𝑖

J. Y. Choi. SNU

PageRank: Does it converge to what we want?

The “Dead end” problem:

Example:



Iteration

𝑟𝑎
𝑟𝑏

→

0

1
0

ተ

1

0
1

2

0
0

ተ

3

0
0

……

26

𝑟𝑗=෍
𝑖→𝑗

𝑟𝑖
𝑑𝑖

J. Y. Choi. SNU

PageRank: Solution to Spider Traps

Google solution for spider traps:

 At each time step, the random surfer has two options

 With probability 𝛽, follow a link at random

 With probability 1 − 𝛽, jump to a random page

 Common values for 𝛽 are in the range 0.8 to 0.9

Result:

 Surfer will teleport out of spider trap within a few time steps

27

J. Y. Choi. SNU

Summary Questions of the lecture

28

 Define the SCC in a graph and present a computation issue to find a

SCC containing a node 𝑣.

 Discuss the conceptual picture of the Web graph obtained from the

result in page 13 of lecture note 14.

 Explain the “Flow’ model for PageRank and discuss its validity on why

it is worth.

 Present a random work interpretation of ‘power iteration’ method of

eigenvector formulation for PageRank.

