Summary Questions of the lecture

= Explain the key aspects of GAT: Graph Attention Networks.
— GAT aggregates the transformed feature vectors of neighbor nodes @h}l) by

weighting them with attention. The attention weights are generated by
applying softmax across the compatibility scores of neighbor nodes:

LeakyReLU (aT[thl)H@h}l)]). Note that a and © are learnable parameters.
Aggregation:

o ®-h®
(1+1) W ACH .
= . - h J |
h; "(Zv;EN(w)“u ©-h) = a —
D
exp(LeakyReLU(aT[@-hED IIB-h?’)])) ¢ :
a.‘fj =
W EWACKTNAC .
kaeN(vi) exp(LeakyReLU(a [(E) h;” 10-h, D) : a .
a, ®: parameters of a single layer network E SoftMax
¢/
hy,
@

J. Y. Choi. SNU

Siapll U-INCLos UUWIsalllpic uic yiapil Usitly yroOul, UpsdlilipiCos 1t Usifly YulipOuUL, dllu ualisiUlitis yrapilh icatuics Wil Uic SIiipiiicu CHTUINTL opeullitdlly, YrOLI ULWIIsaAlTIPICs a yIvell ylapll (/LML) Uy STICLUTTy UIc 1UP A

Summary Questions of the lecture

= Explain the key aspects of gPool: Graph U-Nets.

— Graph U-Nets downsamples the graph using gPool, upsamples it using gUnpool,
and transforms graph features with the simplified ChebNet. Specifically, gPool
downsamples a given graph (X!, AY) by selecting the top k most
Important nodes. The importance scores y are generated by multiplying a
learnable parameter vector (1 x 1 convolution filter) p to X' and normalizing it.
The scores are also used to gate the graph signals of the selected nodes to

generate the output graph signals. gunpool simply restores the graph back to its
preVIOUS structure. sigmoid X : matrix multlpllcatlon

©: element-wise product
p: trainable vector

FET o s

i topk

Af

]. Y C h o l) SNU Inputs Projection Top k Node Selection Gate Outputs)

Summary Questions of the lecture

= EXxplain the key aspects of DiffPool: Hierarchical Graph Representation
Learning with Differentiable Pooling

— DiffPool first embeds the input graph X to H through the simplified ChebNet
operation. Then, it generates a soft assignment matrix S through another
simplified ChebNet operation, but this time its output is normalized with the
softmax. Since S provides the probability matrix for each node being assigned
to each cluster, the input graph can be pooled with H, = S"H and 4, = ST AS.

l
x3! h3

Assignment Matrix for pooling: § € R™"»
S = SoftMax(D~1/2AD~1/2X0,) « GCN

GCN Filtering(node embedding): H € R
H = ReLU(D™Y?AD~'/2X0,) « GCN

4
DiffPool layer:
Hp — STH € Rand”
A, = STAS € {0,1}"""™p

J. Y. Choi. SNU

Summary Questions of the lecture

= Explain the key aspects of EigenPooling: Graph Convolutional Networks
with EigenPooling

= EigenPooling first clusters the input graph by directly adopting Laplacian
clustering. Then, within each cluster's sub-graph, the node features are
smoothed by applying a hard low pass filter in the spectral domain. The
resulting sub-graph feature vectors are averaged to obtain the feature
vector of a representative node for each sub-graph.

oy SEme Eigenvectors (Fourier Modes) of the subgraph
==== === mmmm Fourier coefficients for i —th channel ::::
U . GFTT i EEEN
hi=U"h; mm Truncated Fourier coefficients for i —th channel ..@“
h, === [_ (h, w— Ry = l/mzlgu, A
; -

/Y%D : ' IGFT " Node merging

J. Y. Choi. SNU

Outline of Lecture (4)

= Spatial GCN » Link Analysis
= Spatial View of Simplified ChebNet = Directed Graph
) = Strongly Connected Graph
= GraphSage (Hamilton et al. NIPS 2017) - Directed Acyclic Graph
= GAT : Graph Attention (VeliCkovic et al. ICLR 2018) = Link Analysis Algorithms
= MPNN: Message Passing (Glimer et al. ICML 2017) = PageRank (Ranking of Nodes)
= gPool: Graph U-Nets (Gao et al. ICML 2019) " Personalized PageRank

= Random Walk with Restarts

= DiffPool: Differentiable Pooling (Ying et al.
NeurlPS 2018)

= EigenPooling: EigenPooling (Ma et al. KDD 2019) - Pr_oF:D?gd?;[ﬁ-?leisll?gpggrig?Cdng’lﬁ;On

» Graph Diffusion-Embedding Networks [CVPR’19]
= Making a new graph
» Diffusion Improves Graph Learning [NIPS'19]

» Graph Learning-Convolutional Nets. [CVPR’19]

J. Y. Choi. SNU 5

Link Analysis

PageRank, Directed Graph (Web, Epldemlc)
Random work, Teleporting,

» Machine Learning with Graphs, Jurij Leskovec, Stanford University
= Recent papers

J. Y. Choi. SNU

http://web.stanford.edu/class/cs224w/

Directed Graph

at Univ. of X

J. Y. Choi. SNU

I'm a student

Web Pages

Kessnets ™ N DI

ito Watts 2006

Coleman
1988
Granovetier
1985
9

Rapoport Migram Lazarsteid-
1953 1967 Harary 1956 Meston 1954

Citations

Directed Graph

Directional Node Set: In(v), Out(v)

In(v) = {w|w can reach v}

Out(v) = {w|v can reach w}

) - In(4) = {w|4,B,C,E, G}
Out(A) = {w|A,B,C,D, F)

Graph structure in the Web, computer networks (Broder et al. 2000), 4078 cites
J. Y. Choi. SNU g

http://snap.stanford.edu/class/cs224w-readings/broder00bowtie.pdf

Directed Graph

Two types of directed graphs:

= Strongly connected:
= Any node can reach any node via a directed path

In(A)=Out(A)={A,B,C,D,E} - B

» Directed Acyclic Graph (DAG):
» Has no cycles: if u can reach v, then v cannot reach wu.

D C

Any directed graph (the Web) can be expressed in terms of these two types!
* |s the Web a big strongly connected graph or a DAG? No.

J. Y. Choi. SNU

Directed Graph

A Strongly Connected Component (SCC) in a graph is a set of nodes S so that:
» Every pair of nodes in S can reach each other
* There is no larger set containing S with this property

Strongly Connected
Components in the graph:

A, B,C, G D} ES (F}

J. Y. Choi. SNU

10

Directed Graph

Fact: Every directed graph is a DAG on its SCCs
(D SCCs partitions the nodes of G, where each node is in exactly one SCC

@ If we build a graph G whose nodes are SCCs, and with an edge between
nodes of G , and there is an edge between any two of SCCs in G, then G IS
a DAG
@® Strongly Connected Components in
the graph G: {A,B,C,G},{D},{E},{F}
@ G is a DAG
{E}

{F}

{A,B,C,G}
{D}

J. Y. Choi. SNU

11

Directed Graph

Computational issue:
= Want to find a SCC containing node v?

Observation:
* Qut(v) ... nodes that can be reached from v
» In(v) ...nodesthatcanreachto v

= SCC containing v is:
Out(v) N In(v) = Out(v,G) N Out(v,(),
where G is G with all edge directions flipped

J. Y. Choi. SNU

Out(v)

In(v)

SCC(v)

12

Directed Graph

Altavista web crawl, Graph structure in the Web, Broder et al., 2000
= 203 million URLSs, 1.5 billion links

Computation:
= Compute In(v) and Out(v) by starting at random nodes.
= Observation: The BFS(breadth-first search) either visits many nodes or very few.

Result: Based on In and Out of a random node v:
* Qut(v) = 100 million (50% nodes)
* In(v) = 100 million (50% nodes)
» Largest SCC: 56 million (28% nodes)

What does this tell us about the conceptual picture of the Web graph?

J. Y. Choi. SNU 13

http://snap.stanford.edu/class/cs224w-readings/broder00bowtie.pdf

Ranking Nodes on the Graph

All web pages are not equally “important”
Harmful Site vs. Seoul National University

There is large diversity in the web-graph
node connectivity.

So, let's rank the pages using the web graph
link structure!

J. Y. Choi. SNU

14

Link Analysis Algorithms

We will cover the following Link Analysis approaches to
compute the importance of nodes in a graph:

» PageRank
» Personalized PageRank
» Random Walk with Restarts

J. Y. Choi. SNU

15

Link as Votes

ldea: Links as votes
= Page is more important if it has more links
* |[n-coming links? Out-going links?

Think of in-links as votes:
has 20,000 in-links per day
has 2 in-links per day

Are all in-links equal?
» Links from important pages count more
= Recursive question! (Importance propagation)

J. Y. Choi. SNU

16

PageRank: The ‘Flow’ Model

A “vote” from an important page is worth
more:

= Each link’s vote is proportional to the
Importance of Its source page

= |f page i with importance r; has d; out-links,
each link gets r;/d; votes

= Page j’s own importance r; is the sum of the
votes on its in links

J. Y. Choi. SNU

r=r/3+ r/4

17

PageRank: The ‘Flow’ Model

» A page is important if it is pointed by other
Important pages

= Define a "rank” r; for node j
— Ti
= Zi—’f d;’

where d; Is out-degree of node i.

* ‘Flow’ equations:

r T
— Y a s —

ry Gaussian elimination to solve this
Tu=—+"1, = I,=2n, . .
2 &= system of linear equations.
—Ta oo =2 Bad ideal!

T, T,
m 2 L

J. Y. Choi. SNU

18

PageRank: Matrix Formulation

» Stochastic adjacency matrix M
= Let page j have d; out-links

[
= Ifj —» i,then M, =1/d, %]

* M is a column stochastic matrix of which -~
Columns sum to 1 13~ ~(]
= Rank vector : An entry per page
= 71; is the importance score of page = ‘Flow’ equations:
.ZITI-:]‘ | . Ty:%—l—%
» The flow equations can be written . n1 |1/2 1/2 0|17
" r = Mr ra:7y+7‘m% a|=11/2 0 1||7
y i "m 0 1/2 0|L"m
[] ‘r o . § — a
J i~Jd; Ty = ’"?

J. Y. Choi. SNU

PageRank: Eigenvector Formulation

* The flow equations can be written
" r = Mr Ax = Ax

» So the rank vector r is an eigenvector of the stochastic web matrix M
for eigenvalue 4 = 1.

= Starting from any vector u, the limit M (M (... M (Mu))) is the long-term
distribution of the surfers.

* The math: Limiting distribution = eigenvector for A = 1 of M = PageRank.

* Note: If ris the limit of MM... MMu, then r satisfies the equation r = Mr,sor
is an eigenvector of M with eigenvalue

* \We can now efficiently solve for r

= The method is called ‘Power iteration’

J. Y. Choi. SNU 20

PageRank: Eigenvector Formulation

» Given a web graph with N nodes, where the nodes are pages and
edges are hyperlinks

= Power Iiteration: a simple iterative scheme

T
= Initialize: 7@ = [% %] |

= |terate: r¢*+D) = ypr® 1= Zi_gd—i

= Stop when ||r*D — 0| < e

where ||x||; = 21<;<ylx;| @and we can use any other vector norms.

» About 50 iterations are sufficient to estimate the limiting solution

J. Y. Choi. SNU

21

PageRank: Random Work Interpretation

* Imagine a random web surfer:
= At any time t, surfer is on some page i
= Attime t + 1, the surfer follows an out-link from i uniformly at random
* Ends up on some page j linked from i
* Process repeats indefinitely

n | et:

= () is a vector whose i —th coordinate is the probability that the surfer is at page
[attime t

= So, r(®) is a probability distribution over pages

J. Y. Choi. SNU

22

PageRank: How to solve?

R: Given a web graph with N nodes, where the nodes are pages and
edges are hyperlinks

T
= Initialize: 7© = [% %] .

Ty

= lterate: D = Mr® « n=3,

= Stop when |7+ —r®|| <€

where ||x||; = 21<i<ylx;| @and we can use any other vector norms.

* Does this converge?
* Does it converge to what we want?
» Are results reasonable?

J. Y. Choi. SNU

PageRank: Problems

Two problems:

(1) Some pages are dead ends
» Such pages cause importance to “leak out”

(2) Spider traps (all out-links are within the group)
= Eventually spider traps absorb all importance

J. Y. Choi. SNU

24

PageRank: Does this converge?

The “Spider trap” problem:

0—0"
Example:

lteration 0l11213

ra
Ty Ol1]1]1

p—
-
-
-

J. Y. Choi. SNU

zi—)j

Ul

i

25

PageRank: Does it converge to what we want?

The “Dead end” problem:

o—0 Y
Y. = —_—
J i—>jdi
Example:
lteration 0111213
o ra — 1lololo
T ojl1lo0]o0

J. Y. Choi. SNU

PageRank: Solution to Spider Traps

Google solution for spider traps:

= At each time step, the random surfer has two options
= With probability 8, follow a link at random
= With probability 1 — £, jump to a random page
= Common values for § are in the range 0.8 t0 0.9

Result:

= Surfer will teleport out of spider trap within a few time steps

$ o

J. Y. Choi. SNU

27

Summary Questions of the lecture

= Define the SCC in a graph and present a computation issue to find a
SCC containing a node v.

= Discuss the conceptual picture of the Web graph obtained from the
result in page 13 of lecture note 14.

= Explain the “Flow’ model for PageRank and discuss its validity on why
It is worth.

» Present a random work interpretation of ‘power iteration’ method of

eigenvector formulation for PageRank.

J. Y. Choi. SNU

28

