
J. Y. Choi. SNU

Summary Questions of the lecture

1

 Define the SCC in a graph and present a computation issue to find a

SCC containing a node 𝑣.

→An SCC in a directed graph is the largest possible set of nodes where

every pair of nodes in the set can reach each other. The SCC containing

a specific node 𝑣 can be found by intersecting the set of nodes that can

reach 𝑣 and the set of nodes that 𝑣 can reach.

J. Y. Choi. SNU

Summary Questions of the lecture

2

 Discuss the conceptual picture of the Web graph obtained from the

result in page 13 of lecture note 14.

→ In the observation, a randomly chosen node either visits a lot of pages

or very few nodes. Then, in average, around half of all pages can reach

a randomly chosen page 𝑣 and can be reached from the page 𝑣. Thus,

we can say that all web pages are not equally “important”.

J. Y. Choi. SNU

Summary Questions of the lecture

3

 Explain the “Flow’ model for PageRank and discuss its

validity on why it is worth.

→“Flow’ model is formulated to estimate the importance

of a page by voting the incoming links, where links

incoming from important pages count more. The

importance of each page are equally divided by the

number of its outgoing neighbors and propagated to

the outgoing neighbors. Then the importance of each

page is defined by the sum of all incoming importance

from its incoming neighbors. The flow model effectively

captures the intuition that links from important pages

are worth more than links from those that are not.

J. Y. Choi. SNU

Summary Questions of the lecture

4

 Present a random work interpretation of ‘power iteration’ method of

eigenvector formulation for PageRank.

→The ‘power iteration’ is a method to approximately calculate the rank

vector 𝒓 by repeatedly multiplying the stochastic adjacency

matrix 𝑀 to the previous rank vector 𝒓. Since each iterarion is

equivalent to a web surfer randomly taking an outgoing link in the

current page at each time step, the ‘power iteration’ can be

interpreted as a random walk having a transition probability of 𝑀
and 𝒓 is interpreted as a vector of the probability that the surfer stays

at each page.

J. Y. Choi. SNU 5

Link Analysis
How do we actually compute the PageRank

J. Y. Choi. SNU

Outline of Lecture (4)

6

 Spatial GCN

 Spatial View of Simplified ChebNet

 GraphSage (Hamilton et al. NIPS 2017)

 GAT : Graph Attention (Veličković et al. ICLR 2018)

 MPNN: Message Passing (Glimer et al. ICML 2017)

 gPool: Graph U-Nets (Gao et al. ICML 2019)

 DiffPool: Differentiable Pooling (Ying et al.

NeurIPS 2018)

 EigenPooling: EigenPooling (Ma et al. KDD 2019)

 Link Analysis

 Directed Graph

 Strongly Connected Graph

 Directed Acyclic Graph

 Link Analysis Algorithms

 PageRank (Ranking of Nodes)

 Random Teleports

 Google Matrix

 Sparse Matrix Formulation

 Personalized PageRank

 Random Walk with Restart

 Propagation using graph diffusion
 Predict Then Propagate [ICLR’19]

 Graph Diffusion-Embedding Networks [CVPR’19]

 Making a new graph
 Diffusion Improves Graph Learning [NIPS’19]

 Graph Learning-Convolutional Nets. [CVPR’19]

J. Y. Choi. SNU

PageRank: How to solve?

R: Given a web graph with 𝑁 nodes, where the nodes are pages and

edges are hyperlinks

 Initialize: 𝒓(0) =
𝟏

𝑵
, … ,

𝟏

𝑵

𝑻
.

 Iterate: 𝒓(𝑡+1) = 𝑴𝒓(𝑡) ← 𝑟𝑗= σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 Stop when 𝒓(𝑡+1) − 𝒓(𝑡)
1
< 𝜖

where 𝒙 1 = σ1≤𝑖≤𝑁 𝑥𝑖 and we can use any other vector norms.

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?

7

J. Y. Choi. SNU

PageRank: Problems

Two problems:

(1) Some pages are dead ends

 Such pages cause importance to “leak out”

(2) Spider traps (all out-links are within the group)

 Eventually spider traps absorb all importance

8

J. Y. Choi. SNU

PageRank: Does this converge?

The “Spider trap” problem:

Example:

Iteration

𝑟𝑎
𝑟𝑏

→

0

1
0

ተ

1

0
1

2

0
1

ተ

3

0
1

……

9

𝑟𝑗=
𝑖→𝑗

𝑟𝑖
𝑑𝑖

J. Y. Choi. SNU

PageRank: Does it converge to what we want?

The “Dead end” problem:

Example:

Iteration

𝑟𝑎
𝑟𝑏

→

0

1
0

ተ

1

0
1

2

0
0

ተ

3

0
0

……

10

𝑟𝑗=
𝑖→𝑗

𝑟𝑖
𝑑𝑖

J. Y. Choi. SNU

PageRank: Solution to Spider Traps

Google solution for spider traps:

 At each time step, the random surfer has two options

 With probability 𝛽, follow a link at random

 With probability 1 − 𝛽, jump to a random page

 Common values for 𝛽 are in the range 0.8 to 0.9

Result:

 Surfer will teleport out of spider trap within a few time steps

11

J. Y. Choi. SNU

PageRank: Solution to Dead Ends

Solution for dead ends :

 Teleports: Follow random teleport links with total probability 1.0 from

dead-ends

 Adjust matrix accordingly

12

𝑦 𝑎 𝑚

𝑦 1/2 1/2 0

𝑎 1/2 0 0

𝑚 0 1/2 0

𝑦 𝑎 𝑚

𝑦 1/2 1/2 1/3

𝑎 1/2 0 1/3

𝑚 0 1/2 1/3

J. Y. Choi. SNU

PageRank: Why teleports solve the problem?

Why are dead-ends and spider traps problems and why do teleports

solve the problem?

 Spider-traps are not a problem, but with traps PageRank scores are not

what we want

 Solution: Never get stuck in a spider trap by teleporting out of it in a finite number

of steps

 Dead-ends are a problem

 The matrix is not column stochastic so our initial assumptions are not met

 Solution: Make matrix column stochastic by always teleporting when there is

nowhere else to go

13

J. Y. Choi. SNU

PageRank: Random Teleports

Google solution does it all:

 At each time step, the random surfer has two options
 With probability 𝛽, follow a link at random

 With probability 1 − 𝛽, jump to a random page

PageRank equation [Brin-Page, 98]

𝑟𝑗= 𝛽
𝑖→𝑗

𝑟𝑖
𝑑𝑖

+
𝑖
(1 − 𝛽)

𝑟𝑖
𝑁

Note: This formulation assumes that 𝑴 has no dead ends. We can either
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random teleport
links with probability 1.0 from dead-ends.

14

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

J. Y. Choi. SNU

PageRank: Google Matrix

PageRank equation [Brin-Page, 98]

𝑟𝑗= 𝛽
𝑖→𝑗

𝑟𝑖
𝑑𝑖

+
𝑖
(1 − 𝛽)

𝑟𝑖
𝑁

 Google Matrix 𝑨:

𝑨 = 𝛽𝑴+ (1 − 𝛽)
1

𝑁
𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨𝒓,where the power method still works!

 What is 𝛽?
 In practice 𝛽 =0.8, 0.9 (make 5 steps on average jump)

15

Τ𝟏 𝑵 𝑁×𝑁by 𝑁 matrix
where all entries are
1/𝑁

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

J. Y. Choi. SNU

PageRank: Radom Teleports by Google Matrix (𝛽=0.8)

ൗ1 2
ൗ1 2

0

ൗ1 2
0 0

0 ൗ1 2
1

16

ൗ1 3 ൗ1 3 ൗ1 3

ൗ1 3 ൗ1 3 ൗ1 3

ൗ1 3 ൗ1 3 ൗ1 3

+ 0.20.8

𝑴 ൗ𝟏 𝑵 𝑁×𝑁

ൗ7 15 ൗ7 15 ൗ1 15

ൗ7 15 ൗ1 15 ൗ1 15

ൗ1 15 ൗ7 15 ൗ13
15

𝑨

𝑦
𝑎
𝑚
=

Τ1 3 0.33 0.25 0.26
Τ1 3 0.20 0.22 0.18
Τ1 3 0.47 0.53 0.56

…

7/33
5/33
21/33

J. Y. Choi. SNU

PageRank: Computing PageRank

Key step is matrix-vector multiplication

𝒓𝒏𝒆𝒘 = 𝑨𝒓𝒐𝒍𝒅

𝑨 = 𝛽𝑴+ 1 − 𝛽
1

𝑁
𝑁×𝑁

← 𝑟𝑗= 𝛽
𝑖→𝑗

𝑟𝑖
𝑑𝑖

+
𝑖
(1 − 𝛽)

𝑟𝑖
𝑁

Easy if we have enough main memory to hold 𝑨 , 𝒓𝒏𝒆𝒘, 𝒓𝒐𝒍𝒅

17

Say 𝑁 = 1 billion pages

 We need 4 bytes for each entry (say)

 2 billion entries for vectors, approx.

8GB

 Matrix 𝐴 has 𝑁2 entries: 1018 is a

large number!

J. Y. Choi. SNU

PageRank: Sparse Matrix Formulation

 We can rearrange the PageRank equation

𝒓 = 𝛽𝑴𝒓 + (Τ1 − 𝛽) 𝑁 𝑁
𝑖
𝑟𝑖 ← 𝒓 = 𝑨𝒓,𝑨 = 𝛽𝑴+ 1 − 𝛽 Τ1 𝑁 𝑁×𝑁

where (Τ1 − 𝛽) 𝑁 𝑁 is a vector with all 𝑁 entries (Τ1 − 𝛽) 𝑁.

 𝑴 is a sparse matrix! (with no dead-ends)

 10 links per node, approx. 10 𝑁 ≪ 𝑁2 entries

 So in each iteration, we need to:

 Compute 𝒓𝒏𝒆𝒘 = 𝛽𝑴𝒓𝒐𝒍𝒅

 Add a constant value(Τ1 − 𝛽) 𝑁 to each entry in 𝒓𝒏𝒆𝒘

 Note if 𝑴 contains dead-ends then σ𝑖 𝑟𝑖
𝑛𝑒𝑤 < 1 and we also have to renormalize 𝒓𝒏𝒆𝒘 so

that it sums to 1 (usually, we add self-link to dead end nodes)

18

=1

J. Y. Choi. SNU

PageRank: The Complete Algorithm

19

PageRank Algorithm

01: Input

02: 𝐺: Directed graph with adding self-link to dead end nodes

03: 𝛽: Parameter

04: Output

05: 𝒓𝑛𝑒𝑤: PageRank vector

06: Initialization

07: 𝑟𝑗
𝑜𝑙𝑑 = Τ1 𝑁

08: while σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 ≥ 𝜖 do

09: ∀𝑗, 𝑟𝑗
𝑛𝑒𝑤 = 𝛽σ𝑖→𝑗

𝑟𝑖
𝑜𝑙𝑑

𝑑𝑖
+

1−𝛽

𝑁

10: 𝒓𝑜𝑙𝑑 = 𝒓𝑛𝑒𝑤

11: end while

J. Y. Choi. SNU

PageRank: The Complete Algorithm

20

PageRank Algorithm

01: Input

02: 𝐺: Directed graph with adding self-link to dead end nodes

03: 𝛽: Parameter

04: Output

05: 𝒓𝑛𝑒𝑤: PageRank vector

06: Initialization

07: 𝑟𝑗
𝑜𝑙𝑑 = Τ1 𝑁

08: while σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 ≥ 𝜖 do

09: ∀𝑗, 𝑟𝑗
𝑛𝑒𝑤 = 𝛽σ𝑖→𝑗

𝑟𝑖
𝑜𝑙𝑑

𝑑𝑖
+

1−𝛽

𝑁

10: 𝒓𝑜𝑙𝑑 = 𝒓𝑛𝑒𝑤

11: end while

J. Y. Choi. SNU 21

Link Analysis
Random Walk with Restarts and

Personalized PageRank

J. Y. Choi. SNU

Personalized PageRank: Example

Graph Search

 Given:

Conferences-to-authors graph

 Goal:

Proximity on graphs

 What is most related conference to

ICDM?

 What conferences should we

recommend to M. Jordan to attend?

22

J. Y. Choi. SNU

Personalized PageRank: Bipartite User-to-Item Graph

Which is more related A,A’ or B,B’?

23

J. Y. Choi. SNU

Personalized PageRank: Bipartite User-to-Item Graph

Which is more related A,A’, B,B’ or C,C’?

24

J. Y. Choi. SNU

Personalized PageRank: Bipartite User-to-Item Graph

Which is more related A,A’, B,B’, C,C’, or D, D’?

25

J. Y. Choi. SNU

Personalized PageRank, Proximity on Graph

Graphs and web search:

 Ranks nodes by “importance”

Personalized PageRank:

 Ranks proximity of nodes to the

query(teleport) nodes 𝒯 = {… ,𝑁𝑖 , … }

Proximity on graphs:

 Q: What is most related conference to

ICDM?

 Random Walks with Restarts:

→Teleport back to the starting query node:

𝒯 = { single node }

26

J. Y. Choi. SNU

Personalized PageRank: Teleports

Random Walks

 Every node has some importance

 Importance gets evenly split among all edges and pushed to the

neighbors, based on a graph of relationships between nodes:

Random Walks with Personalized Teleports:

 Given a set of query nodes, we simulate a random walk:

 Make a step to a random neighbor and record the visit (visit count,

voting)

 With probability 𝛼, restart the walk at one of the query nodes

 The nodes with the highest visit count have highest proximity to the

query nodes

27

J. Y. Choi. SNU

Personalized PageRank: proximity to nodes

Query nodes = … ,𝑄,…

𝛼 = 0.5

28

pin_nodes = query_nodes.sample_by_weight()
For i = 1: M

board_node = pin_node.get_random_neighbor()
pin_nodes = board_nodes.get_tandom_neighbor()
pin_nodes.visit_count +=1
if random() < 𝛼,

pin_nodes = query_nodes.sample_by_weight()
end

end

pin_nodes

board_nodes

J. Y. Choi. SNU

Personalized PageRank: benefits

 Why is this great?

 It considers:

 Multiple connections (hops)

 Multiple paths

 Direct and indirect connections

 Degree of the node

29

J. Y. Choi. SNU

Personalized PageRank: Non-bipartite Graphs

Q: Which conferences are

closest to KDD & ICDM?

A: Personalized PageRank

with teleport set S={KDD,

ICDM}

30

J. Y. Choi. SNU

Personalized PageRank: Non-bipartite Graphs

Q: Which conferences is

the most related to ICDM?

A: Random walks with

restart at S={ICDM}

31

J. Y. Choi. SNU

PageRank: Summary

 “Normal” PageRank:

 Teleports uniformly at random to any node

 All nodes have the same probability of surfer landing there

 𝓣𝑇 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

 “Topic-Specific” PageRank also known as Personalized PageRank:

 Teleports to a topic specific set of pages

 Nodes can have different probabilities of surfer landing there

 𝓣𝑇= [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]

 PageRank with “Restarts”:

 Topic-Specific PageRank where teleport is always to the same node

 𝓣𝑇=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

32

𝒓 = (1 − 𝛼)𝑴𝒓 + 𝛼𝒯

J. Y. Choi. SNU

Summary Questions of the lecture

33

 Why are dead-ends and spider traps problems and why do teleports

solve these problems?

 Describe the PageRank algorithm with teleports based on sparse

matrix formulation.

 Describe the random walks with personalized teleports.

