Summary Questions of the lecture

= Describe the key idea of APPNP: Approximated Personalized
Propagation of Neural Prediction.

— APPNP predicts (extracts) the node features using a shared neural
network, then iteratively propagates the features(predictions) for
K steps. The propagation is done by the random walk with the
personalized teleport to the initial predictions, where the Chebyshev
filter, which is also column stochastic, is used for random transition
probability matrix.

P=D1A | « RaWalk
-1/2 ~ ~—-1/2

;1 D AD « ChevNet
Z"" = H = fy(X),
Z*+D) — (1 - 0)AZ® £ aH k = 0,.. K -2
= softmax ( AZ(K D4+ aH)
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Summary Questions of the lecture

» What are the benefits of APPNP: Approximated Personalized
Propagation of Neural Prediction.

— After K steps of propagation, Z&) becomes a weighted sum of K, K —
1,K — 2,---,1 —hop aggregations and the original node features H.
The multiplicity of the Chebyshev filter makes the feature converge to
the equilibrium point leads but can enlarge the smoothing region and
S0 cause a over-smoothing. However, APPNP can prevent over-
smoothing by the teleport to the original node features H and the
attenuation of the propagation coefficients of high-order hops.

7H) = (1 — a)AZEK-D 4 qH

700 = (1 - o)A ((1 _ a)Az&-D 4 aH) + ol
7®) = (1 — q)2422%K-2) 4 (1 — a)aAH + aH
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Summary Questions of the lecture

» Discuss the difference among personalized PageRank, ShevNet, and
APPNP.

— The central differences lie in the type of filters (or transition matrices
In random walk-sense) used, and whether explicitly retaining original
features (or random teleports in random walk-sense) is allowed.
Personalized PageRank uses the vanilla normalized adjacency matrix
and allows teleports to a random query node. The simplified ChebNet
uses the Chebyshev filter for the transition matrix, and does not allow
the original features to be explicitly included. APPNP also uses the
Chebyshev filter, but allows random teleports to the original features.
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Outline of Lecture (5)

» Link Analysis
* Directed Graph
= Strongly Connected Graph
» Directed Acyclic Graph
» Link Analysis Algorithms
» PageRank (Ranking of Nodes)
Random Teleports
Google Matrix
Sparse Matrix Formulation
Personalized PageRank
Random Walk with Restart
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= Random Walks and Diffusion

= Diffusion in GCN
* Propagation using graph diffusion
= APPNP: Predict Then Propagate [IC
LR’19]

= Graph Diffusion-Embedding Network
s [CVPR'19]
= Making a new graph
= Diffusion Improves Graph Learning
[INIPS’19]
= SSL with Graph Learning-Convolutio
nal Networks [CVPR’19]




GCN:Graph Diffusion

(Continued) Random Walks and Diffusion, Diffusion in GCN
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GCN: APPNP

» Predict Then Propagate: Graph Neural Networks Meet Personalized Pager
ank [ICLR'19]

= PPNP: Personalized Propagation of Neural Prediction

a1
Zppyp = softamx|a (I — (1 - a)A) H]

= APPNP: Approximated Personalized Propagation of Neural Prediction

A=D"?AD™""
Z" = H = fy(X),

Z*) = (1-)AZ® faH k = 0,.., K -2

Fa)
i~

ZK) = softmax ((1 —a)AZED 4 o:H) :
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https://arxiv.org/pdf/1810.05997.pdf

GCN: APPNP

» Predict Then Propagate: Graph Neural Networks Meet Personalized Pager
ank [ICLR'19]

Table 2: Average accuracy with uncertainties showing the 95 % confidence level calculated by boot-
strapping. Previously reported improvements vanish on our rigorous experimental setup, while

PPNP and APPNP significantly outperform the compared models on all datasets.

Model CITESEER Cora-ML PUBMED MS ACADEMIC
V.GCN __ 73.51 + 0.48 82.30 £ 0.34 77.65 + 0.40 91.65 + 0.09
GCN 75.40 + 0.30 83.41 +0.39 78.68 + .38 02.10 + 0.08
N-GCN  74.25 + (.40 82.25 + 0.30 77.43 + 0.42 02.86 + 0.11
GAT 75.39 £ 0.27 84.37T £0.24 77.76 £ 0.44 01.22 + 0.07
JK 73.03 £ 0.47 82.60 £ 0.35 77.88 + .38 01.71 £ 0.10
Bt. FP 73.55 + 0.57 80.84 + 0.97 72.94 + 1.00 01.61 + 0.24
PPNP*  75.83 + 0.27 85.29 + 0.25 - -
APPNP  75.73+0.30 85.00+0.25 79.73+0.31 93.27 4 0.08

“out of memory on PUBMED, MS ACADEMIC (see efficiency analysis in Section 3)
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https://arxiv.org/pdf/1810.05997.pdf

Graph Diffusion (generalized)

= Generalized graph diffusion = 700 = (1 — o) <AKE Y 4 (1 — @)aAH + aH
\ !

= P: Transition probability matrix K ~hop aggregation
» §: weighting coefficient
S = Z HkPk )
k=0
1

P=AD"Yor D Y24D712 or 1+ D)"Y2(14+ A)(1+ D)2

» e.g. heat kernel & personalized PageRank

k

r
o = e‘tﬁ, " = a(1 — a)¥
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Graph Diffusion Convolution (GDC)

= Diffusion-Convolution Neural Networks [NIPS'16]

» Diffusion Improves Graph Learning [NeurlPS'19]

* Instead of aggregating information only from the first-hop neighbors,
Graph Diffusion Convolution (GDC) aggregates information from a
larger neighborhood (spatially localized)

* |n practice, new graph is created via graph
» Heat Kernel Diffusion
» Personalized PageRank Diffusion

=5 =YY% ,0,PF becomes an adjacency matrix of a new graph, which
Improves the learning performance of a GCN.
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http://papers.nips.cc/paper/6212-diffusion-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/9490-diffusion-improves-graph-learning.pdf

Graph Diffusion Convolution (GDC)

» Generalized graph diffusion

Szz Hkpk,
k=0

* |n general, S becomes a dense mairix, and so sparsification is done
additionally for S
= Top—k:Use the k entries with the highest mass per column, 2
= Thresholding e: Set entries below € to zero

" Normalize (symmetric)
TS = Dg /25D 1/

= Apply other graph methods on 73,

J. Y. Choi. SNU
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Graph Diffusion Convolution (GDC)

» Generalized graph diffusion

S=z gkpk,
k=0

= Sparsification is done additionally for S
» Normalize (symmetric)
& N—1/2ap/-1/2
Tsym = De ""SDg

= GCN (ShevNet): F'=77, H', H*! = 6(F'0)
= GAT (Attention): F' =77, (a)H!, H*! = o(F'@)

= Hyperparameters: 8, (Heat kernels or APPNP), order of k

J. Y. Choi. SNU
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Graph Diffusion Convolution (GDC)
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Figure 1: Illustration of graph diffusion convolution (GDC). We transform a graph A via graph
diffusion and sparsification into a new graph .S and run the given model on this graph instead.
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Graph Diffusion Convolution (GDC)

CoORrA 75 CITESEER PUBMED
84 80
o 72
s
> 69
& 78 76
§ lNunﬂ 66
O 75 ® Heat 63
< 7| oPPR ‘0 72
(L GCN  GAT JK ARMA CN  GAT JK t,m ARMA JK mn ARMA
COAUTHOR CS Amz ComP AMZ PHOTO

—_ 90
S 80
:92
5 75
= 60
[
> 60
< 00

40

JK ARMA GCN  GAT JK GIN  ARMA GCN  GAT JK GIN  ARMA

Figure 3: Node classification accuracy of GNNs with and without GDC. GDC consistently improves
accuracy across models and datasets. It is able to fix models whose accuracy otherwise breaks down.
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Graph Diffusion-Embedding Networks (GDEN)

» Data Representation and Learning with Graph Diffusion-Embedding
Networks [Bo Jiang et al., CVPR’19]

= Similar to GDC+GCN, but GDC is used as a aggregation function.
» Standard GCN:Standard GCN:

~—1/2 ~ ~—1/2

FO = (I1+D ZAD 2)HO _ 52 ih

H(E+1) — g(F(l) wO)

A

» This one-step diffusion does not return the equilibrium representation
of feature diffusion which thus may lead to weak contextual feature
representation.
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http://openaccess.thecvf.com/content_CVPR_2019/papers/Jiang_Data_Representation_and_Learning_With_Graph_Diffusion-Embedding_Networks_CVPR_2019_paper.pdf

Graph Diffusion-Embedding Networks (GDEN)

= Standard GCN: ShevNet
FO) = (jj_l/zgijj_m JHWO  F: viewed as a feature diffusion method

g+l — J(F(l) w(l))
» Graph Diffusion Convolution (GDC):
FO — (D; UE’S”D;UE yHO S<S= z:;oekP" «P=D714
» Approx. Personalized Propagation of Neural Prediction (APPNP):
Fl = [(1— )XAX + Y5201 — a)kad¥|H'  [A—p PAp
= PPNP:
Fl = a(1— (1 - a)A)"1H!
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Graph Diffusion-Embedding Networks (GDEN)

= Graph Diffusion Convolution (GDC):

D - 1/2%—1/2 ] Scs=Y o —pP=D1a
FO = (D, /*Sp. /" )HY Zk:o“"

S

* PPNP:

Fl=a(l=(0-aA) 0 A-p " iD""

= Graph Diffusion-Embedding Network (GDEN):

Model Diffusion operator (A, H)
RWR Eq.(9) (1—XN)(I—-)XAD ')~ 'H
LapReg Eq.(11) AD—-A+ M) 'H
NLapReg Eq.(13) | (1 —~)(I— D ZAD 2)~'H

J. Y. Choi. SNU
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Graph Diffusion-Embedding Networks (GDEN)
» Graph Diffusion-Embedding Network (GDEN):

Model Diffusion operator F,(A, H)
RWR Eq.(9) (1—-AN)(I—-)XAD ')~ 'H
LapReg Eq.(11) AD—A+AI)"'H
NLapReg Eq.(13) | (1 —~)(I— D ZAD z)~'H

» Random Walk with Restart (RWR)

» Laplacian Regularization

IIllIl

(t+1) (t)
f )\Z” L Pt} + (1= Mh;

= Z Aijllfi — ;,.H%Hanz- — hy||2
1=1

‘Ej]_

* Normalized Laplacian Regularization

J. Y. Choi. SNU
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> wl\\/— \/—|2+AZIIf —h[3
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Graph Diffusion-Embedding Networks (GDEN)

g+ — g(_}r'd (A, H(k))w(k))

Table 2. Comparison results on citation network datasets

J. Y. Choi. SNU

Methond Citeseer Cora Pubmed
ManiReg [2] 60.1% 59.5% 70.7%
LP [36] 45.3% 68.0% 63.0%
DeepWalk [26] | 43.2% 67.2% 65.3%
Planetoid [33] 64.7% 75.7% 77.2%
DCNN [1] 64.5% 76.7% 75.3%
GCN [15] 70.3% 83.6% T8.3%
GAT [30] 71.0% 83.2% 78.0%
GDEN-RWR T2.8% 82.0% T8.7%
GDEN-Lap 72.6%9% 84.7% 78.9%
GDEN-NLap 70.3% | 85.1% T8.7%
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Graph Learning-Convolutional Networks (GLCN)

= Semi-supervised Learning with Graph Learning-Convolutional Netwo
rks [Bo Jiang et al., CVPR'19]

» Key idea: Making a new graph then applying GCNs
= How to make a new graph? Link prediction!

Graph learning Graph convolution

.............................................................

@ - - D__‘ - - Semi-supervised
= classification loss
@ D ( E ' W (0) W (K) EScmi-G('N
: Graph learning ‘ . Convolution :
ST T T e | e
> loss L£aL

J. Y. Choi. SNU
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http://openaccess.thecvf.com/content_CVPR_2019/papers/Jiang_Semi-Supervised_Learning_With_Graph_Learning-Convolutional_Networks_CVPR_2019_paper.pdf

Graph Learning-Convolutional Networks (GLCN)

= Graph Learning Layer:
= given an input: X = (z1,25---z,) € R"*7,
» aim to seek a non-negative function S;; = g(z;,z;)for link prediction
* implemented via a single-layer neural network, parameterized by
a weight vector a = (a1, a2, --a,)?

Sij = g(xi,15) = Aij exp(ReLU(a”|zi — )
ij — 9\ Liy Lj) = Z;’le Aij exp(ReLU(a” |x; — z;|))

L | [

(when A is not available, 4;; = 1)

€2

= Graph Learning LoOsSS: 5
P g xSQ

Lo = Y |lzi — =l[3Si +ISI% + 8IS - Al | a is trained

ij=1
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Graph Learning-Convolutional Networks (GLCN)

= Total Loss:

Lsemi-GLcN = Lsemi-gen + ALGL

Table 1. Comparison results of semi-supervised learning on
dataset Citeseer, Cora and Pubmed.

J. Y. Choi. SNU

Methond Citeseer Cora Pubmed
ManiReg [2] 60.1% 59.5% 70.7%
LP[23] 45.3% 68.0% 63.0%
DeepWalk [18] 43.2% 67.2% 65.3%
GCN [11] 70.9% 82.9% 77.9%
GAT [21] 71.0% 83.2% 78.0%
GLCN 72.0% | 85.5% | 78.3%
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Summary: Diffusion in GCN Fl=a(-(1-)A)'H [Z_p "ip "

= Preliminaries:

= Random Walk & Diffusion Rwhf{‘”g:l. 5 Dgiflf‘:? (‘I)p_er;‘flr)ff)(_A 1‘3 )
" PageRank LapReg Eq.(11) A(D—A+MI)'H
NLapReg Eq.(13) | (1 —~)(I—~+D 2AD 2)~'H

= Papers:
* Propagation using graph diffusion
» Predict Then Propagate: Graph Neural Networks Meet Personalized
PageRank [ICLR’19]
» Data Representation and Learning with Graph Diffusion-Embedding
Networks [CVPR’19]
= Making a new graph
= Diffusion Improves Graph Learning [NIPS’19]
= Semi-supervised Learning with Graph Learning-Convolutional Netwo

rks [CVPR'19]

n _ 1/2~ 1/2 (D S8 = " (};,_Pj" —«P=D14
FO = (D, 7"SD,"")H ZM ‘

A'i" exXp RELU((IT ;i — X,
Si; = g(xi,x;) = J ( | il))

- >0 Aijexp(ReLU(aT |z; — )
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Summary Questions of the lecture

= Describe the key aspects of Graph Diffusion-Embedding Networks.
= Describe the key aspects of Graph Diffusion Convolution.

= Describe the key aspects of Graph Learning-Convolutional Networks .

J. Y. Choi. SNU
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