
J. Y. Choi. SNU

Summary Questions of the lecture

1

 Why is the Graph Generation Tasks hard?

 GGT is difficult because 1) the output graph space is large and

variable, 2) a single graph has multiple representations, and 3)

determining edge connections depend on long-range and extensive

information.

J. Y. Choi. SNU

Summary Questions of the lecture

2

 Discuss the machine learning background of auto-regressive model to

obtain the graph generative models.

 Auto-regressive models sequentially predict graph-generation actions

(adding a node and one or more edges) on the current time step

based on all past actions. These actions are represented by random

variables, whose distribution is estimated from the given data

distribution with a parametric distribution model in a maximum

likelihood manner, and then actions are sampled from the distribution

by the estimated model.

J. Y. Choi. SNU

Summary Questions of the lecture

3

 Explain GraphRNN which is a sequence process to generate a graph

with a node ordering.

 GraphRNN generates a graph through a sequenc of sequences. That

is, on time-step 𝑡, node 𝑡 is first added to the graph, which forms node

level sequence. Then, at the node level action 𝑡, edge level sequence

is conducted by determining whether the node is connected to each

of the existing nodes 1, 2,⋯ , 𝑡 − 1.

J. Y. Choi. SNU

Outline of Lecture (5)

4

 Random Walks and Diffusion

 Diffusion in GCN

 Propagation using graph diffusion

 APPNP: Predict Then Propagate [IC

LR’19]

 Graph Diffusion-Embedding Network

s [CVPR’19]

 Making a new graph

 Diffusion Improves Graph Learning

[NIPS’19]

 SSL with Graph Learning-Convolutio

nal Networks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation

 ML Basics for Graph Generation

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

J. Y. Choi. SNU 5

DGMG: (Continue)

Deep Generative Models For Graph

Deep Graph Encoder, Graph Generation

J. Y. Choi. SNU

Deep Graph Decoders

Outline of Contents

 Problem of Graph Generation

 ML Basics for Graph Generation

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

(J. You et al., ICML 2018)

6

https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf

J. Y. Choi. SNU

GraphRNN

IDEA

 Generating graphs via sequentially adding nodes and edges

7

J. Y. Choi. SNU

GraphRNN

Model Graphs as Sequences

 Graph 𝐺 with node ordering 𝜋 can be uniquely mapped into a sequence of

node and edge additions 𝑆𝜋

8

J. Y. Choi. SNU

GraphRNN

The sequence 𝑆𝜋 has two levels: (𝑆 is a sequence of sequences)
 Node-level: add nodes, one at a time

 Edge-level: add edges between existing nodes

 Node-level: At each step, a new node is added

9

J. Y. Choi. SNU

GraphRNN

The sequence 𝑆𝜋 has two levels: (𝑆 is a sequence of sequences)

 Each Node-level step is an edge-level sequence (multiple edges per each

node)

 Edge-level: At each edge-level step, add a new edge

10

J. Y. Choi. SNU

GraphRNN

Model Graphs as Sequences

 Summary: a graph + a node ordering = a sequence of sequences!

 Node ordering is randomly selected (we will come back to this)

11

J. Y. Choi. SNU

GraphRNN

Two levels of RNN

 GraphRNN has a node-level RNN and an edge-level RNN

 Relationship between the two RNNs:

 Node-level RNN generates the initial state for edge-level RNN

 Edge-level RNN generates edges for the new node, then updates node-level RNN

state using generated results

12

J. Y. Choi. SNU

GraphRNN

Two levels of RNN

13

J. Y. Choi. SNU

GraphRNN

Two levels of RNN

14

J. Y. Choi. SNU

GraphRNN

RNN: Recurrent Neural Networks

 𝑠𝑡: State of RNN after time 𝑡
 𝑥𝑡: Input to RNN at time 𝑡
 𝑦𝑡: Output of RNN at time 𝑡
 𝑊,𝑈, 𝑉: parameter matrices, 𝜎(⋅) : non-linear activation function

 More expressive cells: GRU, LSTM, etc.

15

J. Y. Choi. SNU

GraphRNN

RNN for Sequence Generation

 Q: How to use RNN to generate sequences?

 A: Let 𝑥𝑡+1 = 𝑦𝑡
 Q: How to initialize 𝑠0, 𝑥1? When to stop generation?

 A: Use start/end of sequence token (SOS, EOS)- e.g., zero vector

 This is good, but this model is deterministic

16

J. Y. Choi. SNU

GraphRNN

RNN for Sequence Generation

 Remember our goal: Use RNN to model

𝑃𝑚𝑜𝑑𝑒𝑙 𝒙|𝜽 = ς𝒕=𝟏
𝒏 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽

 Let 𝑦𝑡 = 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽
 Then 𝑥𝑡+1 is a sample from 𝑦𝑡: 𝑥𝑡+1~𝑦𝑡

 Each step of RNN outputs a probability vector

 We then sample from the vector, and feed sample to next step:

17

J. Y. Choi. SNU

GraphRNN

RNN at Test Time

 Suppose we already have trained the model
 𝑦𝑡 follows Bernoulli distribution (choice of 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽)

 𝑦𝑡 = 𝑝 means 𝑥𝑡+1 has value 1 with prob. 𝑝, and 0 with prob. 1 − 𝑝

 Right now everything is generated by the model

 How do we use training data 𝑥1, … , 𝑥𝑛?

18

J. Y. Choi. SNU

GraphRNN

Training RNN

 We observe a sequence 𝑦∗ of edges [1,0,…]

 Principle: Teacher Forcing -- Replace input and output by the real

sequence

19

J. Y. Choi. SNU

GraphRNN

Training RNN

 Loss 𝐿: Binary cross entropy

 Minimize:

𝐿 = −
𝑖
𝑦𝑖
∗ log 𝑦𝑖 + (1 − 𝑦𝑖

∗) log(1 − 𝑦𝑖)

 If 𝑦𝑖
∗ = 1,we minimize −log 𝑦𝑖, making 𝑦𝑖 higher to approach 1

 If 𝑦𝑖
∗ = 0,we minimize −log(1 −𝑦𝑖), making 𝑦𝑖 lower to approach 0

 𝑦𝑖 is computed by RNN, this loss will adjust RNN parameters

accordingly, using back propagation!

20

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Assuming Node 1 is in the graph Now

adding Node 2

21

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Edge RNN predicts how Node 2

connects to Node 1

22

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Edge RNN gets supervisions from

ground truth

23

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 New edges are used to update Node

RNN

24

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Edge RNN predicts how

Node 3 connects to Node 2

25

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Edge RNN gets supervisions

from ground truth

26

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 New edges are used to

update Node RNN

27

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Node 4 doesn’t connect to

any nodes, stop generation

28

J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Backprop: All gradients are

accumulated across steps

29

J. Y. Choi. SNU

GraphRNN

Put Things Together: Test

 Replace ground truth by

GraphRNN’s predictions!

30

J. Y. Choi. SNU

GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

 Generate a graph by generating a two level sequence

 Use RNN to generate the sequences

 Lack of connection to the encoder

 Next: Making GraphRNN tractable, proper evaluation

31

J. Y. Choi. SNU

GraphRNN:

Tractability:

 Any node can connect to any prior node

 Too many steps for edge generation
 Need to generate full adjacency matrix

 Complex too-long edge dependencies

32

Random Node Ordering

- Add node 1

- Add node 5

- Add node 6

- Add node 4

- ….

→ Sequential edge connection modeling is too complex

J. Y. Choi. SNU

GraphRNN:

Tractability via BFS

 Breadth-First Search node ordering

 BFS node ordering:
 We know all Node 1’s neighbors have already been traversed

 Two hop neighbors such as Node 4, 5 need not to connect to Node 1

 Therefore, multi-hop nodes know the connections to the grandparant nodes

 We only need memory of a couple of “steps” rather than 𝑛 − 1 steps

33

BFS Ordering

- Add node 1

- Add node 2

- Add node 3

- Add node 4

- ….

→ need memory of a couple of “steps” in a hierarchical manner

J. Y. Choi. SNU

GraphRNN:

Tractability via BFS

 Breadth-First Search node ordering

 Benefits:
 Reduce possible node orderings

 From 𝑂(𝑛!) to number of distinct BFS orderings

 Reduce steps for edge generation

 Reducing number of previous nodes to look at

34

BFS Ordering

- Add node 1

- Add node 2

- Add node 3

- Add node 4

- ….

→ need memory of a couple of “steps” in a hierarchical manner

J. Y. Choi. SNU

GraphRNN:

Tractability via BFS

 BFS Reduce the number of steps for edge generation

35

J. Y. Choi. SNU

GraphRNN:

Evaluating Generated Graphs

 Task: Compare two sets of graphs

 Goal: Define similarity metrics for graphs

 Challenge: There is no efficient Graph Isomorphism test that can be

applied to any class of graphs!

 Solution
 Visual similarity

 Graph statistics similarity

36

Graph similarity scoring and matching
Graph Similarity and Approximate Isomorphism
Modeling and Measuring Graph Similarity: The Case for
Centrality Distance

https://www.sciencedirect.com/science/article/pii/S0893965907001012
https://arxiv.org/pdf/1802.08509.pdf
https://arxiv.org/pdf/1406.5481.pdf

J. Y. Choi. SNU

GraphRNN:

Visual Similarity

37

J. Y. Choi. SNU

Deep Graph Decoders

Outline of Contents

 Problem of Graph Generation

 ML Basics for Graph Generation

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

38

J. Y. Choi. SNU

Applications

Drug Discovery

 Question: Can we learn a model that can generate valid and realistic molecules with high

value of a given chemical property?

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu,

R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)

39

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

J. Y. Choi. SNU

Applications

Goal-Directed Graph Generation

 Optimize a given objective (High scores)

 e.g., drug-likeness (black box)

 Obey underlying rules (Valid)

 e.g., chemical valency rules

 Are learned from examples (Realistic)

 e.g., Imitating a molecule graph dataset

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, R.

Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)

40

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

J. Y. Choi. SNU

Applications

Graph Convolutional Policy Network combines graph representation + RL:

 Graph Neural Network captures complex structural information, and enables validity check in

each state transition (Valid)

 Reinforcement learning optimizes intermediate/final rewards (High scores)

 Adversarial training generates samples to imitate examples in given datasets (Realistic)

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu,

R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)

41

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

J. Y. Choi. SNU

Applications

Qualitative Results:

 Visualization of GCPN graphs:

 Generate graphs with high property scores

42

J. Y. Choi. SNU

Applications

Qualitative Results:

 Visualization of GCPN graphs:

 Edit given graph for higher property scores

43

J. Y. Choi. SNU

Open Problems

 Generating graphs in other domains

 3D shapes, point clouds, scene graphs, etc.

 Scale up to large graphs

 Hierarchical action space, allowing high-level action like adding a structure at a time

 Other applications: Anomaly detection (Auto-Encoder, GAN)

 Use generative models to estimated prob. of real graphs vs. fake graphs

44

Efficient Graph Generation with Graph Recurrent Attention Networks,

NeurIPS 2019 (서성욱 발표)

https://papers.nips.cc/paper/8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf

J. Y. Choi. SNU

Summary Questions of the lecture

45

 What is the meaning of the output of each RNN cell in GraphRNN?

 How can we obtain the input of each RNN cell in GraphRNN?

 Explain the training method of GraphRNN in the view point of loss

and training path.

