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 Why is the Graph Generation Tasks hard?

 GGT is difficult because 1) the output graph space is large and 

variable, 2) a single graph has multiple representations, and 3) 

determining edge connections depend on long-range and extensive 

information.
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 Discuss the machine learning background of auto-regressive model to 

obtain the graph generative models. 

 Auto-regressive models sequentially predict graph-generation actions 

(adding a node and one or more edges) on the current time step 

based on all past actions. These actions are represented by random 

variables, whose distribution is estimated from the given data 

distribution with a parametric distribution model in a maximum 

likelihood manner, and then actions are sampled from the distribution 

by the estimated model.
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 Explain GraphRNN which is a sequence process to generate a graph 

with a node ordering. 

 GraphRNN generates a graph through a sequenc of sequences. That

is, on time-step 𝑡, node 𝑡 is first added to the graph, which forms node 

level sequence. Then, at the node level action 𝑡, edge level sequence 

is conducted by determining whether the node is connected to each

of the existing nodes 1, 2,⋯ , 𝑡 − 1.
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Outline of Lecture (5)
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 Random Walks and Diffusion

 Diffusion in GCN

 Propagation using graph diffusion

 APPNP: Predict Then Propagate [IC

LR’19]

 Graph Diffusion-Embedding Network

s [CVPR’19]

 Making a new graph

 Diffusion Improves Graph Learning 

[NIPS’19]

 SSL with Graph Learning-Convolutio

nal Networks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions
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DGMG: (Continue)

Deep Generative Models For Graph

Deep Graph Encoder, Graph Generation
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Deep Graph Decoders

Outline of Contents  

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models 

(J. You et al., ICML 2018)
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https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf
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GraphRNN

IDEA

 Generating graphs via sequentially adding nodes and edges 
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GraphRNN

Model Graphs as Sequences

 Graph 𝐺 with node ordering 𝜋 can be uniquely mapped into a sequence of 

node and edge additions 𝑆𝜋
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GraphRNN

The sequence 𝑆𝜋 has two levels: (𝑆 is a sequence of sequences)
 Node-level: add nodes, one at a time 

 Edge-level: add edges between existing nodes 

 Node-level: At each step, a new node is added
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GraphRNN

The sequence 𝑆𝜋 has two levels: (𝑆 is a sequence of sequences)

 Each Node-level step is an edge-level sequence (multiple edges per each 

node) 

 Edge-level: At each edge-level step, add a new edge
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GraphRNN

Model Graphs as Sequences

 Summary: a graph + a node ordering = a sequence of sequences! 

 Node ordering is randomly selected (we will come back to this)
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GraphRNN

Two levels of RNN

 GraphRNN has a node-level RNN and an edge-level RNN 

 Relationship between the two RNNs: 

 Node-level RNN generates the initial state for edge-level RNN 

 Edge-level RNN generates edges for the new node, then updates node-level RNN 

state using generated results
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Two levels of RNN
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GraphRNN

Two levels of RNN
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GraphRNN

RNN: Recurrent Neural Networks

 𝑠𝑡: State of RNN after time 𝑡
 𝑥𝑡: Input to RNN at time 𝑡
 𝑦𝑡: Output of RNN at time 𝑡
 𝑊,𝑈, 𝑉: parameter matrices, 𝜎(⋅) : non-linear activation function

 More expressive cells: GRU, LSTM, etc.
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GraphRNN

RNN for Sequence Generation 

 Q: How to use RNN to generate sequences?

 A: Let 𝑥𝑡+1 = 𝑦𝑡
 Q: How to initialize 𝑠0, 𝑥1? When to stop generation?

 A: Use start/end of sequence token (SOS, EOS)- e.g., zero vector

 This is good, but this model is deterministic
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GraphRNN

RNN for Sequence Generation 

 Remember our goal: Use RNN to model 

𝑃𝑚𝑜𝑑𝑒𝑙 𝒙|𝜽 = ς𝒕=𝟏
𝒏 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽

 Let 𝑦𝑡 = 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽
 Then 𝑥𝑡+1 is a sample from 𝑦𝑡: 𝑥𝑡+1~𝑦𝑡

 Each step of RNN outputs a probability vector 

 We then sample from the vector, and feed sample to next step:
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GraphRNN

RNN at Test Time 

 Suppose we already have trained the model
 𝑦𝑡 follows Bernoulli distribution (choice of 𝑃𝑚𝑜𝑑𝑒𝑙 𝑥𝑡|𝑥1, … , 𝑥𝑡−1 , 𝜽 )

 𝑦𝑡 = 𝑝 means 𝑥𝑡+1 has value 1 with prob. 𝑝, and 0 with prob. 1 − 𝑝

 Right now everything is generated by the model 

 How do we use training data 𝑥1, … , 𝑥𝑛?
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GraphRNN

Training RNN

 We observe a sequence 𝑦∗ of edges [1,0,…]

 Principle: Teacher Forcing -- Replace input and output by the real 

sequence
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GraphRNN

Training RNN

 Loss 𝐿: Binary cross entropy

 Minimize:

𝐿 = −
𝑖
𝑦𝑖
∗ log 𝑦𝑖 + (1 − 𝑦𝑖

∗) log(1 − 𝑦𝑖)

 If 𝑦𝑖
∗ = 1,we minimize −log 𝑦𝑖, making 𝑦𝑖 higher to approach 1

 If 𝑦𝑖
∗ = 0,we minimize −log(1 −𝑦𝑖), making 𝑦𝑖 lower to approach 0

 𝑦𝑖 is computed by RNN, this loss will adjust RNN parameters 

accordingly, using back propagation!
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GraphRNN

Put Things Together: Training

 Assuming Node 1 is in the graph Now 

adding Node 2

21



J. Y. Choi. SNU

GraphRNN

Put Things Together: Training

 Edge RNN predicts how Node 2 

connects to Node 1
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GraphRNN

Put Things Together: Training

 Edge RNN gets supervisions from 

ground truth
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GraphRNN

Put Things Together: Training

 New edges are used to update Node 

RNN
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GraphRNN

Put Things Together: Training

 Edge RNN predicts how 

Node 3 connects to Node 2
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GraphRNN

Put Things Together: Training

 Edge RNN gets supervisions 

from ground truth
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GraphRNN

Put Things Together: Training

 New edges are used to 

update Node RNN
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GraphRNN

Put Things Together: Training

 Node 4 doesn’t connect to 

any nodes, stop generation
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GraphRNN

Put Things Together: Training

 Backprop: All gradients are 

accumulated across steps
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GraphRNN

Put Things Together: Test

 Replace ground truth by 

GraphRNN’s predictions!
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GraphRNN: Two levels of RNN

Quick Summary of GraphRNN: 

 Generate a graph by generating a two level sequence 

 Use RNN to generate the sequences 

 Lack of connection to the encoder

 Next: Making GraphRNN tractable, proper evaluation 
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GraphRNN:

Tractability: 

 Any node can connect to any prior node 

 Too many steps for edge generation 
 Need to generate full adjacency matrix 

 Complex too-long edge dependencies

32

Random Node Ordering 

- Add node 1 

- Add node 5 

- Add node 6 

- Add node 4

- ….

→ Sequential edge connection modeling is too complex
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GraphRNN:

Tractability via BFS

 Breadth-First Search node ordering 

 BFS node ordering: 
 We know all Node 1’s neighbors have already been traversed 

 Two hop neighbors such as Node 4, 5 need not to connect to Node 1 

 Therefore, multi-hop nodes know the connections to the grandparant nodes

 We only need memory of a couple of “steps” rather than 𝑛 − 1 steps
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BFS Ordering 

- Add node 1 

- Add node 2 

- Add node 3 

- Add node 4

- ….

→ need memory of a couple of “steps” in a hierarchical manner
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GraphRNN:

Tractability via BFS

 Breadth-First Search node ordering 

 Benefits: 
 Reduce possible node orderings 

 From 𝑂(𝑛!) to number of distinct BFS orderings 

 Reduce steps for edge generation 

 Reducing number of previous nodes to look at

34

BFS Ordering 

- Add node 1 

- Add node 2 

- Add node 3 

- Add node 4

- ….

→ need memory of a couple of “steps” in a hierarchical manner
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GraphRNN:

Tractability via BFS

 BFS Reduce the number of steps for edge generation 
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GraphRNN:

Evaluating Generated Graphs

 Task: Compare two sets of graphs

 Goal: Define similarity metrics for graphs 

 Challenge: There is no efficient Graph Isomorphism test that can be 

applied to any class of graphs! 

 Solution 
 Visual similarity 

 Graph statistics similarity

36

Graph similarity scoring and matching
Graph Similarity and Approximate Isomorphism
Modeling and Measuring Graph Similarity: The Case for 
Centrality Distance

https://www.sciencedirect.com/science/article/pii/S0893965907001012
https://arxiv.org/pdf/1802.08509.pdf
https://arxiv.org/pdf/1406.5481.pdf
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GraphRNN:

Visual Similarity
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Deep Graph Decoders

Outline of Contents  

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions
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Applications

Drug Discovery

 Question: Can we learn a model that can generate valid and realistic molecules with high 

value of a given chemical property?

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, 

R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)

39

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
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Applications

Goal-Directed Graph Generation

 Optimize a given objective (High scores) 

 e.g., drug-likeness (black box) 

 Obey underlying rules (Valid) 

 e.g., chemical valency rules 

 Are learned from examples (Realistic) 

 e.g., Imitating a molecule graph dataset

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, R. 

Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)
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https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf


J. Y. Choi. SNU

Applications

Graph Convolutional Policy Network combines graph representation + RL: 

 Graph Neural Network captures complex structural information, and enables validity check in 

each state transition (Valid) 

 Reinforcement learning optimizes intermediate/final rewards (High scores) 

 Adversarial training generates samples to imitate examples in given datasets (Realistic)

GCPN: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, 

R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

←Link prediction by Reinforcement learning (Policy Gradient Training)
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https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
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Applications

Qualitative Results: 

 Visualization of GCPN graphs: 

 Generate graphs with high property scores

42
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Applications

Qualitative Results: 

 Visualization of GCPN graphs: 

 Edit given graph for higher property scores 
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Open Problems

 Generating graphs in other domains 

 3D shapes, point clouds, scene graphs, etc. 

 Scale up to large graphs 

 Hierarchical action space, allowing high-level action like adding a structure at a time 

 Other applications: Anomaly detection (Auto-Encoder, GAN)

 Use generative models to estimated prob. of real graphs vs. fake graphs 
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Efficient Graph Generation with Graph Recurrent Attention Networks, 

NeurIPS 2019 (서성욱 발표)

https://papers.nips.cc/paper/8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf
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 What is the meaning of the output of each RNN cell in GraphRNN?

 How can we obtain the input of each RNN cell in GraphRNN?

 Explain the training method of GraphRNN in the view point of loss 

and training path.


