Summary Questions of the lecture

* What is the meaning of the output of each RNN cell in GraphRNN?
= The node-RNN at time-step t outputs the initial state of the edge-
RNN. The edge-RNN sequentially outputs the probability that the
current node t is connected to each existing node. The edge
connectivity (1 for connected, O for not connected) is determined by
sampling from the probability outputted by the edge-RNN. The edge-
RNN stops when it outputs the end token EOS.
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Summary Questions of the lecture

= How can we obtain the input of each RNN cell in GraphRNN?

* The first input of any RNN is the start token SOS. After that, the edge-

RNN receives the binary output of the previous cell, and the node-
RNN receives all of the outputs of the previous edge-RNN sequence

as a vector.
Put Things Together: Test 1 (1
= Replace ground truth by Edge 0
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Summary Questions of the lecture

= Explain the training method of GraphRNN in the view point of loss
and training path.

= During training, both RNNs receive the ground truth as input,
regardless of the output of the previous cell. Output probabilities of
edge-RNNs are learned in the supervised manner with the binary
cross-entropy loss. Since RNNs weights are shared, the gradients
w.r.t. the weights are accumulated across time-steps.

Put Things Together: Training 1
L =-— . - 1 —vy)log(1 — v; = Backprop: All gradients are 05
Zi[yl ogy; + (1 —y;)log(l - ;)] oM cio: Mgy

accumulated across steps Kl :
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Outline of Lecture (5)

= Random Walks and Diffusion

= Diffusion in GCN

* Propagation using graph diffusion
= APPNP: Predict Then Propagate

= Graph Diffusion-Embedding Netw

[ICLR'19]

orks [CVPR'19]

= Making a new graph

= Diffusion Improves Graph Learnin

= SSL with Graph Learning-Convol

J. Y. Choi. SNU

g [NIPS19]

utional Networks [CVPR’19]

* Deep Generative Models For Graph

* Problem of Graph Generation

= ML Basics for Graph Generation

= GraphRNN : Generating Realistic Graphs

= Applications and Open Questions

= Tacking Oversmoothing

Oversmoothing in GCN
Taubin smoothing
Jumping knowledge networks

ResNet, DenseNet, and Dilated
convolution

PairNorm; normalization layer for GNNs




Tackling Over-smoothing

Over-smoothing washes away graph signal on each node ....
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Oversmoothing

Kipf et al. (ICLR 2017) SSL with GCN

Li et al., (AAAI 2018), Deeper Insights into Graph Convolutional Networks ..., |2 M 2t &5

Taubin (ICCV 1995) Taubin smoothing,

Xu et al. (ICML 2018) uses jumping knowledge networks

Li et al. (ICCV 2019) borrows the concept of ResNet, DenseNet, and Dilated convolution.

Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer for GNNSs.
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Oversmoothing

* When the layers are deeper, the performances are degenerate harshly.
» The main cause of this phenomenon is over smoothing effects on GNNSs.
* What is and how to circumvent over smoothing effects?

J. Y. Choi. SNU
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https://arxiv.org/pdf/1609.02907.pdf

Oversmoothing

* When GCN goes deep, the performance can suffer from over smoothing
where node representations from different clusters become mixed up.

(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) S-layer

Li et al. (AAAI 2018)
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Oversmoothing

= Lietal (AAAI 2018) shows that GCN Is a special form of Laplacian
smoothing.

* They proved that oversmoothing washes away graph signal on each node.
* This means oversmoothing makes the node indistinguishable.

| héoré 1. If a graph has no biparﬁte components, then
| for any w € R", and o € (0, 1], “

lim (I —aL.,)"w=[1D 12 109,

m—-+0o0

lim (I —aLgy,)"w=D"21WM 1@ 101g,

m— 400

i where 01 € R¥. 0y € R”, ie., they converge to a linear
 combination of {10k and {D21DYE__ respectively. .
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Laplacian smoothing

Normalized Ad.

Eigenvalue ()
y =1

0 < y < 1 is scaling factor which controls the speed of the diffusion process.

J. Y. Choi. SNU

L=1-D"124p~1/2 = gAUT
U= [ul,uz,...,uN]
A= diag[ﬂ.l,/lz,...,ﬂ.lv]

xi = (I —yL)x; = f(L)x;

hi = (I —yL)*x; = f(L)*x;
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Laplacian smoothing
L=1-D"124AD~Y2 = ypUT
Normalized Ad;. U= [ug,Uy,..., uy]
A= diag[/'ll,/’{z, . JAN]
hy = (I —yL)*x; = f(L)*x;
fAD* = (A -y~
For every A € (0,2],

Eigenvalue (\) since |1 —y4| <1for0<y<1
y=1

we have (1 —y1;)* - 0 when k - o

except f(0) =1

J. Y. Choi. SNU



Laplacian smoothing

Normalized Ad;.

Eigenvalue ()
y =1

J. Y. Choi. SNU

we have (1 —y1,)* - 0 when k — o

except f(0) =1

= This means that all the frequency
components, other than the zero
frequency component, are attenuated for
large k.

* The eigenvector of zero frequency
component is one vector, (1,1,...,1)"

= After lots of iteration the zero frequency
component is preserved and the value of
this is independent of the feature values!

12



Taubin smoothing (ICCV 1995)

= Taubin proposed second degree transfer function to solve the
problem of shrinkage.

fA) = A =yA)(A — pdy)

= Taubin smoothing can be interpreted as two consecutive steps of
Laplacian smoothing with different scaling factors.

1. y > 0: Laplacian smoothing step with positive scale factor (shrinking
step)

2. u < —y < 0: Laplacian smoothing step with negative scale factor
(unshrinking step, Laplacian sharpening, high frequency amplification)

J. Y. Choi. SNU
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Taubin smoothing (ICCV 1995)

0 App2
A

0 App

A

B

Figure 4: Graph of transfer functions for the y|u algo-
rithm. (4) f(A) = (1=p2)(1 —yA). (B) f(4) = (1 —u2)(1 -

yAWK with k > 1.

J. Y. Choi. SNU

Taubin smoothing

u<—-y<o

Since f(0O)=1and u+y <0,
there is pass-band frequency Apg ,
such that f(Apg) = 1.

The value of APB IS APB = -+

<L
T IR
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Taubin smoothing (ICCV 1995)

0 App2
A

fA)=A=-yA)A - /ilfli)l
<—y<0, App=—+-—
1.0 7 meTr Ty

}l, region of interest 4 € [0,2]

pass-band: A =0to A = App.
0 App 2

B As A increases from A = Apg t0 A = 2,

/(1) decreases to zero.

Figure 4: Graph of transfer functions for the y|u algo-
rithm. (4) f(A) = (1 —u2)(1 —y.A). (B) f(A) = (1 —pA)(1 - The rate of decrease is controlled by the

yAWK with k > 1.

J. Y. Choi. SNU

number of iterations k .

Taubin recommends Apz = 0.1
1/u=-291,1/y =3.01 1/u=-191,1/y = 2.01
- [(2)=(1—(1/3.0)2)(1+(1/2.91)2) =0.33*1.69=0.56
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Taubin smoothing (ICCV 1995)

Non-shrinking smoothing

Laplacian
smoothing

J. Y. Choi. SNU

Taubin
smoothing
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Taubin smoothing (ICCV 1995)

Non-shrinking smoothing

s

Laplacian
smoothing

Taubin
smoothing

J. Y. Choi. SNU

original

original

3 steps

10 steps

6 steps

50 steps

18 steps

200 steps
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Tackling Oversmoothing

= Xu et al. (ICML 2018) uses jumping
knowledge networks (kinds of skip

connection) to alleviate the over | ayer aggregation
Smoothing issue Concat/Max-pooling/LSTM-attn

Model Citeseer Model Cora
GCN (2) 77.3(1.3) GCN (2) 88.2 (0.7)
GAT (2) 76.2 (0.8) GAT (3) 87.7 (0.3)

JK-MaxPool (1)  77.7(0.5) | JK-Maxpool (6) 89.6 (0.5)
JK-Concat (1) 78.3 (0.8) | JK-Concat (6) 89.1 (1.1)
JK-LSTM (2) 74.7 (0.9) JK-LSTM (1) 85.8 (1.0)

Input feature of node v: X,, € R%

J. Y. Choi. SNU
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Tackling Oversmoothing

» Lietal. (ICCV 2019) borrows the concept of computer vision; ResNet,
DenseNet, and Dilated convolution.

(—------—A/ \/ \ / Input; i Input;
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Sy ; = _ £ c e | A—
o—m i  QanPio L 85—%? - §§-8§_85’-’_+ anGen ] | ResGCN :
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Tackling Oversmoothing

» Lietal. (ICCV 2019) borrows the concept of computer vision; ResNet,
DenseNet, and Dilated convolution.

Ground Truth PlainGCN-28 ResGCN-28 DenseGCN-28

: P &
(31 Py
| | ) ek
| B
- 1

AERNE S -
) § A
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Tackling Oversmoothing

» Lietal. (ICCV 2019) borrows the concept of computer vision; ResNet,
DenseNet, and Dilated convolution.

Method OA mlOU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [ 7] 785 476 88.0 887 693 424 23.1 47.5 516 541 420 96 38.2 294 352
MS+CU [] 792 478 886 958 673 369 249 48.6 523 519 451 106 368 24.7 375
G+RCU [] 81.1 497 903 921 679 447 242 523 512 581 474 69 39.0 30.0 419

PointNet++ [ V] . 53.2 90.2 91.7 731 427 212 49.7 423 627 590 196 458 48.2 45.6
3DRNN+CF [ V] 869 563 929 938 731 425 259 47.6 592 604 66.7 248 57.0 36.7 516

DGCNN [ 1] 84.1 56.1 - - . . . . . . - . ; . .
ResGON-28 (Ours) 859  60.0 931 953 782 339 374 56.1 68.2 649 610 346 515 511 544

Table 2. Comparison of ResGCN-28 with state-of-the-art on S3IDIS Semantic Segmentation. We report average per-class results across
all areas for our reference model ResGCN-28, which has 28 GON layers, residual graph connections, and dilated graph convolutions, and
state-of-the-art baselines. ResGCN-28 outperforms state-of-the-art by almost 4%. It also outperforms all baselines in 9 out of 13 classes.
The metrics shown are overall point accuracy (OA) and mean IoU (mloU). "= denotes not reported and bold denotes best performance.

J. Y. Choi. SNU 21
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Oversmoothing

* When the layers are deeper, the performances are degenerate harshly.
» The main cause of this phenomenon is over smoothing effects on GNNSs.
* What is and how to circumvent over smoothing effects?

J. Y. Choi. SNU
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Kipf et al. (ICLR 2017) Simplified ShevNet (GCN)
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Tackling Oversmoothing

» Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer
for GNNs. They keep the total pairwise squared distance.

H;_i{ﬂ leiz—.—xil\% + Z I%; — %[5 — A Z |%: — %13
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Tackling Oversmoothing

» Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer
for GNNs. They keep the total pairwise squared distance.

TPSD(X) := >, ey % = %53 = TPSD(X)
A R
X =X; — — X; _ _ (Center)
i X = AynX
% =5 = sy ——— (Scale)
V2 z: nx:.fn% 1Xe|12
X; -
TPSD(X) = 2n|X||% = ZHZ s - I3 = 2n | T > ) |IXS[I5 = 2n®s
NEPALEIE 2
------ S =L (11
. X L, X 1){0 { X
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Tackling Oversmoothing

» Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer
for GNNs. They keep the total pairwise squared distance.

—— PairNorm é"_ Original
137 = EQ - — col_diff
1
> | o, |1 @ 0.31
2 1.0 g08 Saqi g
o 5 8 \ 8
| 9 0.6 g \ é‘ 0.21 |
0.5 ~— train_loss s 21
—valloss | I} = | TSseal_
. . —— test loss 0.4 . A “““-'- ------ 0.1
0 20 40 0 20 40
Layers Layers

Figure 1: (best in color) SGC’s performance (dashed lines) with increasing graph convolutions (K)
on Cora dataset (train/val/test split is 3%/10%/87%). For each K, we train SGC in 500 epochs,
save the model with the best validation accuracy, and report all measures based on the saved model.
Measures row-diff and col-diff are computed based on the final layer representation of the saved
model. (Solid lines depict after applying our method PAIRNORM, which we discuss in §3.2.)
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Outline of Lecture

Introduction

Graph Spectral Theory

" Definition of Graph

" Graph Laplacian

. Laplacian Smoothing

Graph Node Clustering

. Minimum Graph Cut

. Ratio Graph Cut

. Normalized Graph Cut

Manifold Learning

= Spectral Analysis in Riemannian Manifolds
. Dimension Reduction, Node Embedding

J. Y. Choi. SNU

Semi-supervised Learning (SSL) : conti.

. Self-Training Methods

. SSL with SVM

. SSL with Graph using MinCut

. SSL with Graph using Harmonic Functions

. SSL with Graph using Regularized Harmonic
Functions

. SSL with Graph using Soft Harmonic Functions

. SSL with Graph using Manifold Regularization (out
of sample extension)

. SSL with Graph using Laplacian SVMs

. SSL with Graph using Max-Margin Graph Cuts
g Online SSL

. SSL for large graph
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Outline of Lecture

= Review: Convolution Neural Networks (CNN)

Feedforward Neural Networks
Convolution Integral (Temporal)
Convolution Sum (Temporal)
Circular Convolution Sum
Convolution Sum (Spatial)

Convolutional Neural Networks

= Graph Convolution Networks (GCN)
= What are issues on GCN
= Graph Filtering in GCN
= Graph Pooling in GCN

= QOriginal GNN (Scarselli et al. 2005)

J. Y. Choi. SNU

= Spectral GCN

Spectral Filtering

Graph Spectral Filtering in GCN

Spectral Graph CNN (Bruna et al. ICLR 2014)
ChebNet (Defferard et al. NIPS 2016)
Simplified ChebNet (Kipf & Welling, ICLR 2017)

= Spatial GCN

Spatial View of Simplified ChebNet

GraphSage (Hamilton et al. NIPS 2017)

GAT : Graph Attention (VeliCkovic¢ et al. ICLR 2018)
MPNN: Message Passing (Glimer et al. ICML 2017)
gPool: Graph U-Nets (Gao et al. ICML 2019)

DiffPool: Differentiable Pooling (Ying et al.
NeurlPS 2018)

EigenPooling: EigenPooling (Ma et al. KDD 2019)
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Outline of Lecture

» Link Analysis

= Directed Graph
= Strongly Connected Graph
= Directed Acyclic Graph

= Link Analysis Algorithms
» PageRank (Ranking of Nodes)
= Random Teleports
= Google Matrix
» Sparse Matrix Formulation
» Personalized PageRank
= Random Walk with Restart

» Random Walks and Diffusion
* Propagation using graph diffusion
= APPNP: Predict Then Propagate [ICLR’19]
= Graph Diffusion-Embedding Networks
[CVPR’19]

J. Y. Choi. SNU

= Making a new graph

= Diffusion Improves Graph Learning [NIPS’19]

= SSL with Graph Learning-Convolutional Netw

orks [CVPR’19]

= Deep Generative Models For Graph
» Problem of Graph Generation

» ML Basics for Graph Generation

= GraphRNN : Generating Realistic Graphs

= Applications and Open Questions

= Tacking Over-smoothing

Oversmoothing in GCN

Taubin smoothing

Jumping knowledge networks

ResNet, DenseNet, and Dilated convolution
PairNorm; normalization layer for GNNs
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Summary Questions of the lecture

= Why does multiple Laplacian smoothing lead to over-smoothing?

= What is Taubin smoothing?
= Explain PairNorm for GCN.

J. Y. Choi. SNU
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