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Summary Questions of the lecture
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 What is the meaning of the output of each RNN cell in GraphRNN?

 The node-RNN at time-step 𝑡 outputs the initial state of the edge-

RNN. The edge-RNN sequentially outputs the probability that the

current node 𝑡 is connected to each existing node. The edge 

connectivity (1 for connected, 0 for not connected) is determined by 

sampling from the probability outputted by the edge-RNN. The edge-

RNN stops when it outputs the end token EOS.
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Summary Questions of the lecture
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 How can we obtain the input of each RNN cell in GraphRNN?

 The first input of any RNN is the start token SOS. After that, the edge-

RNN receives the binary output of the previous cell, and the node-

RNN receives all of the outputs of the previous edge-RNN sequence 

as a vector.
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Summary Questions of the lecture
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 Explain the training method of GraphRNN in the view point of loss 

and training path.

 During training, both RNNs receive the ground truth as input, 

regardless of the output of the previous cell. Output probabilities of 

edge-RNNs are learned in the supervised manner with the binary 

cross-entropy loss. Since RNNs weights are shared, the gradients 

w.r.t. the weights are accumulated across time-steps.
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Outline of Lecture (5)
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 Random Walks and Diffusion

 Diffusion in GCN

 Propagation using graph diffusion

 APPNP: Predict Then Propagate 

[ICLR’19]

 Graph Diffusion-Embedding Netw

orks [CVPR’19]

 Making a new graph

 Diffusion Improves Graph Learnin

g [NIPS’19]

 SSL with Graph Learning-Convol

utional Networks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

 Tacking Oversmoothing

 Oversmoothing in GCN 

 Taubin smoothing

 Jumping knowledge networks 

 ResNet, DenseNet, and Dilated 

convolution

 PairNorm; normalization layer for GNNs
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Tackling Over-smoothing

Over-smoothing washes away graph signal on each node ….
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Oversmoothing
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Li et al., (AAAI 2018), Deeper Insights into Graph Convolutional Networks …, 최홍석 발표

Xu et al. (ICML 2018) uses jumping knowledge networks

Li et al. (ICCV 2019) borrows the concept of ResNet, DenseNet, and Dilated convolution.

Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer for GNNs.

Taubin (ICCV 1995) Taubin smoothing, 

Kipf et al. (ICLR 2017) SSL with GCN

file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
https://arxiv.org/pdf/1806.03536.pdf
https://arxiv.org/pdf/1904.03751.pdf
https://arxiv.org/pdf/1909.12223.pdf
https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
https://arxiv.org/pdf/1609.02907.pdf
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Oversmoothing

 When the layers are deeper, the performances are degenerate harshly.

 The main cause of this phenomenon is over smoothing effects on GNNs.

 What is and how to circumvent over smoothing effects?

7

Kipf et al. (ICLR 2017) Simplified ShevNet (GCN)Overfitting?

https://arxiv.org/pdf/1609.02907.pdf
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Oversmoothing

 When GCN goes deep, the performance can suffer from over smoothing 
where node representations from different clusters become mixed up.

8

Li et al. (AAAI 2018) 

file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
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Oversmoothing

 Li et al. (AAAI 2018) shows that GCN is a special form of Laplacian 
smoothing.

 They proved that oversmoothing washes away graph signal on each node.

 This means oversmoothing makes the node indistinguishable.

9

file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
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Laplacian smoothing
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𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇

𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑁]

Λ = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, . . . , 𝜆𝑁]

𝑥𝑖
′ = (𝐼 − 𝛾𝐿)𝑥𝑖 = 𝑓(𝐿)𝑥𝑖

(0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝑁 ≤ 2)

ℎ𝑖 = (𝐼 − 𝛾𝐿)𝑘𝑥𝑖 = 𝑓(𝐿)𝑘𝑥𝑖

0 < 𝛾 < 1 is scaling factor which controls the speed of the diffusion process.

𝛾 = 1
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Laplacian smoothing
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𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇

𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑁]

Λ = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, . . . , 𝜆𝑁]

(0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝑁 ≤ 2)

ℎ𝑖 = (𝐼 − 𝛾𝐿)𝑘𝑥𝑖 = 𝑓(𝐿)𝑘𝑥𝑖

𝛾 = 1

𝑓(𝜆𝑖)
𝑘 = (1 − 𝛾𝜆𝑖)

𝑘

For every 𝜆 ∈ (0,2], 

since |1 − 𝛾𝜆𝑖| < 1 for 0 < 𝛾 < 1

we have (1 − 𝛾𝜆𝑖)
𝑘 → 0 when 𝑘 → ∞

except 𝑓(0) = 1
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Laplacian smoothing
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𝛾 = 1

we have (1 − 𝛾𝜆𝑖)
𝑘 → 0 when 𝑘 → ∞

except 𝑓(0) = 1

 This means that all the frequency 

components, other than the zero 

frequency component, are attenuated for 

large 𝑘.
 The eigenvector of zero frequency 

component is one vector, (1,1, . . . , 1)𝑇

 After lots of iteration the zero frequency 

component is preserved and the value of 

this is independent of the feature values!
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Taubin smoothing (ICCV 1995)
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 Taubin proposed second degree transfer function to solve the 
problem of shrinkage.

𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

 Taubin smoothing can be interpreted as two consecutive steps of 
Laplacian smoothing with different scaling factors.

1. 𝛾 > 0: Laplacian smoothing step with positive scale factor (shrinking 
step)

2. 𝜇 < −𝛾 < 0: Laplacian smoothing step with negative scale factor 
(unshrinking step, Laplacian sharpening, high frequency amplification)

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Taubin smoothing (ICCV 1995)
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Taubin smoothing

𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

𝜇 < −𝛾 < 0

Since 𝑓(0) = 1 and 𝜇 + 𝛾 < 0, 

there is pass-band frequency 𝜆𝑃𝐵 ,

such that 𝑓(𝜆𝑃𝐵) = 1.

The value of 𝜆𝑃𝐵 is 𝜆𝑃𝐵 =
1

𝛾
+

1

𝜇
.

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Taubin smoothing (ICCV 1995)
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𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

𝜇 < −𝛾 < 0, 𝜆𝑃𝐵 =
1

𝛾
+
1

𝜇

region of interest 𝜆 ∈ [0,2]

pass-band: 𝜆 = 0 to 𝜆 = 𝜆𝑃𝐵.

As 𝜆 increases from 𝜆 = 𝜆𝑃𝐵 to 𝜆 = 2, 

𝑓(𝜆) decreases to zero.

The rate of decrease is controlled by the 

number of iterations 𝑘 .

Taubin recommends 𝜆𝑃𝐵 = 0.1
Τ1 𝜇 = −2.91, Τ1 𝛾 = 3.01 Τ1 𝜇 = −1.91, Τ1 𝛾 = 2.01

→ 𝑓 2 = 1 − Τ(1 3.01)2 1 + Τ(1 2.91) 2 =0.33*1.69=0.56 

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Taubin smoothing (ICCV 1995)
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Non-shrinking smoothing 

Laplacian
smoothing

Taubin
smoothing

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Taubin smoothing (ICCV 1995)
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Non-shrinking smoothing 

Laplacian
smoothing

Taubin
smoothing

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Tackling Oversmoothing

 Xu et al. (ICML 2018) uses jumping 
knowledge networks (kinds of skip 
connection) to alleviate the over 
smoothing issue.

18

https://arxiv.org/pdf/1806.03536.pdf
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Tackling Oversmoothing

 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.

19

https://arxiv.org/pdf/1904.03751.pdf
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Tackling Oversmoothing

 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.
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https://arxiv.org/pdf/1904.03751.pdf
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Tackling Oversmoothing

 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.
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https://arxiv.org/pdf/1904.03751.pdf
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Oversmoothing

 When the layers are deeper, the performances are degenerate harshly.

 The main cause of this phenomenon is over smoothing effects on GNNs.

 What is and how to circumvent over smoothing effects?

22

Kipf et al. (ICLR 2017) Simplified ShevNet (GCN)Overfitting?

https://arxiv.org/pdf/1609.02907.pdf
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Tackling Oversmoothing

 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.

23

=

https://arxiv.org/pdf/1909.12223.pdf
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Tackling Oversmoothing

 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.

24

=

https://arxiv.org/pdf/1909.12223.pdf
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Tackling Oversmoothing

 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.
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https://arxiv.org/pdf/1909.12223.pdf
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Outline of Lecture

 Introduction

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding 

26

 Semi-supervised Learning (SSL) : conti.

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 

 SSL with Graph using Regularized Harmonic 

Functions 

 SSL with Graph using Soft Harmonic Functions 

 SSL with Graph using Manifold Regularization (out 

of sample extension)

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph Cuts

 Online SSL 

 SSL for large graph 



J. Y. Choi. SNU

Outline of Lecture

 Spectral GCN

 Spectral Filtering 

 Graph Spectral Filtering in GCN

 Spectral Graph CNN (Bruna et al. ICLR 2014)

 ChebNet (Defferard et al. NIPS 2016)

 Simplified ChebNet (Kipf & Welling, ICLR 2017)

 Spatial GCN

 Spatial View of Simplified ChebNet

 GraphSage (Hamilton et al. NIPS 2017)

 GAT : Graph Attention (Veličković et al. ICLR 2018)

 MPNN: Message Passing (Glimer et al. ICML 2017)

 gPool: Graph U-Nets (Gao et al. ICML 2019)

 DiffPool: Differentiable Pooling (Ying et al. 

NeurIPS 2018) 

 EigenPooling: EigenPooling (Ma et al. KDD 2019)

27

 Review: Convolution Neural Networks (CNN)

 Feedforward Neural Networks

 Convolution Integral (Temporal)

 Convolution Sum (Temporal)

 Circular Convolution Sum 

 Convolution Sum (Spatial)

 Convolutional Neural Networks

 Graph Convolution Networks (GCN)

 What are issues on GCN

 Graph Filtering in GCN

 Graph Pooling in GCN

 Original GNN (Scarselli et al. 2005)
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Outline of Lecture
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 Making a new graph

 Diffusion Improves Graph Learning [NIPS’19]

 SSL with Graph Learning-Convolutional Netw

orks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

 Tacking Over-smoothing

 Oversmoothing in GCN 

 Taubin smoothing

 Jumping knowledge networks 

 ResNet, DenseNet, and Dilated convolution

 PairNorm; normalization layer for GNNs

 Link Analysis

 Directed Graph 

 Strongly Connected Graph

 Directed Acyclic Graph

 Link Analysis Algorithms

 PageRank (Ranking of Nodes)

 Random Teleports

 Google Matrix

 Sparse Matrix Formulation

 Personalized PageRank

 Random Walk with Restart

 Random Walks and Diffusion

 Propagation using graph diffusion

 APPNP: Predict Then Propagate [ICLR’19]

 Graph Diffusion-Embedding Networks     

[CVPR’19]



J. Y. Choi. SNU

Summary Questions of the lecture
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 Why does multiple Laplacian smoothing lead to over-smoothing?

 What is Taubin smoothing?

 Explain PairNorm for GCN.


