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 What is the meaning of the output of each RNN cell in GraphRNN?

 The node-RNN at time-step 𝑡 outputs the initial state of the edge-

RNN. The edge-RNN sequentially outputs the probability that the

current node 𝑡 is connected to each existing node. The edge 

connectivity (1 for connected, 0 for not connected) is determined by 

sampling from the probability outputted by the edge-RNN. The edge-

RNN stops when it outputs the end token EOS.
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 How can we obtain the input of each RNN cell in GraphRNN?

 The first input of any RNN is the start token SOS. After that, the edge-

RNN receives the binary output of the previous cell, and the node-

RNN receives all of the outputs of the previous edge-RNN sequence 

as a vector.
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 Explain the training method of GraphRNN in the view point of loss 

and training path.

 During training, both RNNs receive the ground truth as input, 

regardless of the output of the previous cell. Output probabilities of 

edge-RNNs are learned in the supervised manner with the binary 

cross-entropy loss. Since RNNs weights are shared, the gradients 

w.r.t. the weights are accumulated across time-steps.
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 Random Walks and Diffusion

 Diffusion in GCN

 Propagation using graph diffusion

 APPNP: Predict Then Propagate 

[ICLR’19]

 Graph Diffusion-Embedding Netw

orks [CVPR’19]

 Making a new graph

 Diffusion Improves Graph Learnin

g [NIPS’19]

 SSL with Graph Learning-Convol

utional Networks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

 Tacking Oversmoothing

 Oversmoothing in GCN 

 Taubin smoothing

 Jumping knowledge networks 

 ResNet, DenseNet, and Dilated 

convolution

 PairNorm; normalization layer for GNNs
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Tackling Over-smoothing

Over-smoothing washes away graph signal on each node ….
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Li et al., (AAAI 2018), Deeper Insights into Graph Convolutional Networks …, 최홍석 발표

Xu et al. (ICML 2018) uses jumping knowledge networks

Li et al. (ICCV 2019) borrows the concept of ResNet, DenseNet, and Dilated convolution.

Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer for GNNs.

Taubin (ICCV 1995) Taubin smoothing, 

Kipf et al. (ICLR 2017) SSL with GCN

file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
https://arxiv.org/pdf/1806.03536.pdf
https://arxiv.org/pdf/1904.03751.pdf
https://arxiv.org/pdf/1909.12223.pdf
https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
https://arxiv.org/pdf/1609.02907.pdf
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Oversmoothing

 When the layers are deeper, the performances are degenerate harshly.

 The main cause of this phenomenon is over smoothing effects on GNNs.

 What is and how to circumvent over smoothing effects?
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Kipf et al. (ICLR 2017) Simplified ShevNet (GCN)Overfitting?

https://arxiv.org/pdf/1609.02907.pdf
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 When GCN goes deep, the performance can suffer from over smoothing 
where node representations from different clusters become mixed up.
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Li et al. (AAAI 2018) 

file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
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 Li et al. (AAAI 2018) shows that GCN is a special form of Laplacian 
smoothing.

 They proved that oversmoothing washes away graph signal on each node.

 This means oversmoothing makes the node indistinguishable.
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file:///C:/Users/jycho/Downloads/16098-77319-1-PB.pdf
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𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇

𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑁]

Λ = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, . . . , 𝜆𝑁]

𝑥𝑖
′ = (𝐼 − 𝛾𝐿)𝑥𝑖 = 𝑓(𝐿)𝑥𝑖

(0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝑁 ≤ 2)

ℎ𝑖 = (𝐼 − 𝛾𝐿)𝑘𝑥𝑖 = 𝑓(𝐿)𝑘𝑥𝑖

0 < 𝛾 < 1 is scaling factor which controls the speed of the diffusion process.

𝛾 = 1
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𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 = 𝑈Λ𝑈𝑇

𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑁]

Λ = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, . . . , 𝜆𝑁]

(0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝑁 ≤ 2)

ℎ𝑖 = (𝐼 − 𝛾𝐿)𝑘𝑥𝑖 = 𝑓(𝐿)𝑘𝑥𝑖

𝛾 = 1

𝑓(𝜆𝑖)
𝑘 = (1 − 𝛾𝜆𝑖)

𝑘

For every 𝜆 ∈ (0,2], 

since |1 − 𝛾𝜆𝑖| < 1 for 0 < 𝛾 < 1

we have (1 − 𝛾𝜆𝑖)
𝑘 → 0 when 𝑘 → ∞

except 𝑓(0) = 1
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𝛾 = 1

we have (1 − 𝛾𝜆𝑖)
𝑘 → 0 when 𝑘 → ∞

except 𝑓(0) = 1

 This means that all the frequency 

components, other than the zero 

frequency component, are attenuated for 

large 𝑘.
 The eigenvector of zero frequency 

component is one vector, (1,1, . . . , 1)𝑇

 After lots of iteration the zero frequency 

component is preserved and the value of 

this is independent of the feature values!
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 Taubin proposed second degree transfer function to solve the 
problem of shrinkage.

𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

 Taubin smoothing can be interpreted as two consecutive steps of 
Laplacian smoothing with different scaling factors.

1. 𝛾 > 0: Laplacian smoothing step with positive scale factor (shrinking 
step)

2. 𝜇 < −𝛾 < 0: Laplacian smoothing step with negative scale factor 
(unshrinking step, Laplacian sharpening, high frequency amplification)

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Taubin smoothing

𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

𝜇 < −𝛾 < 0

Since 𝑓(0) = 1 and 𝜇 + 𝛾 < 0, 

there is pass-band frequency 𝜆𝑃𝐵 ,

such that 𝑓(𝜆𝑃𝐵) = 1.

The value of 𝜆𝑃𝐵 is 𝜆𝑃𝐵 =
1

𝛾
+

1

𝜇
.

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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𝑓(𝜆𝑖) = (1 − 𝛾𝜆𝑖)(1 − 𝜇𝜆𝑖)

𝜇 < −𝛾 < 0, 𝜆𝑃𝐵 =
1

𝛾
+
1

𝜇

region of interest 𝜆 ∈ [0,2]

pass-band: 𝜆 = 0 to 𝜆 = 𝜆𝑃𝐵.

As 𝜆 increases from 𝜆 = 𝜆𝑃𝐵 to 𝜆 = 2, 

𝑓(𝜆) decreases to zero.

The rate of decrease is controlled by the 

number of iterations 𝑘 .

Taubin recommends 𝜆𝑃𝐵 = 0.1
Τ1 𝜇 = −2.91, Τ1 𝛾 = 3.01 Τ1 𝜇 = −1.91, Τ1 𝛾 = 2.01

→ 𝑓 2 = 1 − Τ(1 3.01)2 1 + Τ(1 2.91) 2 =0.33*1.69=0.56 

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Non-shrinking smoothing 

Laplacian
smoothing

Taubin
smoothing

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Non-shrinking smoothing 

Laplacian
smoothing

Taubin
smoothing

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/taubin-smoothing.pdf
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Tackling Oversmoothing

 Xu et al. (ICML 2018) uses jumping 
knowledge networks (kinds of skip 
connection) to alleviate the over 
smoothing issue.

18

https://arxiv.org/pdf/1806.03536.pdf
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Tackling Oversmoothing

 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.

19

https://arxiv.org/pdf/1904.03751.pdf
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 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.
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https://arxiv.org/pdf/1904.03751.pdf
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 Li et al. (ICCV 2019) borrows the concept of computer vision; ResNet, 
DenseNet, and Dilated convolution.
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https://arxiv.org/pdf/1904.03751.pdf


J. Y. Choi. SNU

Oversmoothing

 When the layers are deeper, the performances are degenerate harshly.

 The main cause of this phenomenon is over smoothing effects on GNNs.

 What is and how to circumvent over smoothing effects?
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Kipf et al. (ICLR 2017) Simplified ShevNet (GCN)Overfitting?

https://arxiv.org/pdf/1609.02907.pdf
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 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.
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=

https://arxiv.org/pdf/1909.12223.pdf
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 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.
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https://arxiv.org/pdf/1909.12223.pdf
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 Zhao et al. (ICLR 2020) proposes PairNorm, the first normalization layer 
for GNNs. They keep the total pairwise squared distance.
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https://arxiv.org/pdf/1909.12223.pdf
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 Introduction

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding 
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 Semi-supervised Learning (SSL) : conti.

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 

 SSL with Graph using Regularized Harmonic 

Functions 

 SSL with Graph using Soft Harmonic Functions 

 SSL with Graph using Manifold Regularization (out 

of sample extension)

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph Cuts

 Online SSL 

 SSL for large graph 
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 Spectral GCN

 Spectral Filtering 

 Graph Spectral Filtering in GCN

 Spectral Graph CNN (Bruna et al. ICLR 2014)

 ChebNet (Defferard et al. NIPS 2016)

 Simplified ChebNet (Kipf & Welling, ICLR 2017)

 Spatial GCN

 Spatial View of Simplified ChebNet

 GraphSage (Hamilton et al. NIPS 2017)

 GAT : Graph Attention (Veličković et al. ICLR 2018)

 MPNN: Message Passing (Glimer et al. ICML 2017)

 gPool: Graph U-Nets (Gao et al. ICML 2019)

 DiffPool: Differentiable Pooling (Ying et al. 

NeurIPS 2018) 

 EigenPooling: EigenPooling (Ma et al. KDD 2019)
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 Review: Convolution Neural Networks (CNN)

 Feedforward Neural Networks

 Convolution Integral (Temporal)

 Convolution Sum (Temporal)

 Circular Convolution Sum 

 Convolution Sum (Spatial)

 Convolutional Neural Networks

 Graph Convolution Networks (GCN)

 What are issues on GCN

 Graph Filtering in GCN

 Graph Pooling in GCN

 Original GNN (Scarselli et al. 2005)
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 Making a new graph

 Diffusion Improves Graph Learning [NIPS’19]

 SSL with Graph Learning-Convolutional Netw

orks [CVPR’19]

 Deep Generative Models For Graph

 Problem of Graph Generation 

 ML Basics for Graph Generation 

 GraphRNN : Generating Realistic Graphs

 Applications and Open Questions

 Tacking Over-smoothing

 Oversmoothing in GCN 

 Taubin smoothing

 Jumping knowledge networks 

 ResNet, DenseNet, and Dilated convolution

 PairNorm; normalization layer for GNNs

 Link Analysis

 Directed Graph 

 Strongly Connected Graph

 Directed Acyclic Graph

 Link Analysis Algorithms

 PageRank (Ranking of Nodes)

 Random Teleports

 Google Matrix

 Sparse Matrix Formulation

 Personalized PageRank

 Random Walk with Restart

 Random Walks and Diffusion

 Propagation using graph diffusion

 APPNP: Predict Then Propagate [ICLR’19]

 Graph Diffusion-Embedding Networks     

[CVPR’19]
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 Why does multiple Laplacian smoothing lead to over-smoothing?

 What is Taubin smoothing?

 Explain PairNorm for GCN.


