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Review: Summary questions of the last Lecture
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 Explain the meaning of Spectral Clustering in one sentence. Why 

spectral?

→ It means that the clustering of nodes in a graph is done on the basis of 

frequency components of the graph signal representing the cluster 

labels of the nodes. 

 What is represented by the solution of Laplacian formulation relaxing 

Balanced Graph cut problem?

→ It represents the second eigenvector of an appropriate Laplacian, which 

gives the given balancing condition.

 What does the solution of MinCut problem mean?

→ It is the second eigenvector of Laplacian, which gives the  balanced 

cardinalities of the clustered groups.

 What does the solution of NormalizedCut problem mean?

 It is the second eigenvector of Symetric Laplacian, which gives the  

balanced volumes of the clustered groups.
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Optimization formulation for spectral clustering

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 ⊥ 𝟏𝑵, 𝒇 = 𝑵

The solution

𝜆2 = 𝐦𝐢𝐧
𝒙𝑇𝒙=𝟏, 𝒙⊥𝒖1

𝒙𝑇𝑳𝒙,  where 𝒖1 = 𝟏𝑵 for 𝜆1 = 0

→ second eigenvector 𝒙 of  𝑳

Since  the elements in 𝒙 are not integer and 𝒙 = 𝟏, 𝒇 can be obtained by 

𝑓𝑖 = ቊ
1 𝑖𝑓 𝑥𝑖 ≥ 0
−1 𝑖𝑓 𝑥𝑖 < 0

→ 𝒇 = 𝑵

𝑓𝑖∈ {1,−1}

𝑨 = 𝑩
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RatioCut

Define graph function 𝒇 for cluster membership of RatioCut: 𝑓𝑖 = ൞

𝑩

𝑨
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑨

𝑩
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩


𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩

𝒇𝑇𝑳𝒇 =
1

2


𝑖,𝑗
𝑤𝑖𝑗 (𝑓𝑖 − 𝑓𝑗)

2= 𝑨 + 𝑩 𝑅𝐶𝑢𝑡 𝑨,𝑩

Since 𝑨 + 𝑩 is constant,   min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝒇

𝒇𝑇𝑳𝒇,

subject to 𝑓𝑖 ∈
𝑩

𝑨
, −

𝑨

𝑩

Still NP hard…Require relaxation.

𝑨 = 𝑩
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Optimization formulation for RatioCut (same with balanced mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to, 𝑓𝑖∈ 𝑅, 𝒇 = 𝑵

𝑠. 𝑡. 𝑓𝑖 =

𝑩

𝑨
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑨

𝑩
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

𝒇𝑇𝑳𝒇

𝒇 𝟐 = σ𝑖 𝑓𝑖
2 = 𝑨

𝑩

𝑨
+ 𝑩

𝑨

𝑩
= 𝑨 + 𝑩 = 𝑵 → not sufficient for 𝑓𝑖∈

𝑩

𝑨
, −

𝑨

𝑩

𝑨 = 𝑩𝒇𝑇𝑳𝒇 ≠ 𝑨 + 𝑩 
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩
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Optimization formulation for RatioCut (same with balanced Mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 ⊥ 𝟏𝑵, 𝒇 = 𝑵

𝑨 = 𝑩 → 
𝑖
𝑓𝑖 = 0 ↔ 𝒇 ⊥ 𝟏𝑵

Optimization formulation for RatioCut (same with balanced mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 = 𝑵
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The solution

𝜆2 = 𝐦𝐢𝐧
𝒙𝑇𝒙=𝟏, 𝒙⊥𝒖1

𝒙𝑇𝑳𝒙,  where 𝒖1 = 𝟏𝑵 for 𝜆1 = 0.

→ second eigenvector 𝒙 of  𝑳

Since  the elements in 𝒙 are not integer and 𝒙 = 𝟏, 𝒇 can be obtained by 

𝑓𝑖 =

𝑩

𝑨
𝑖𝑓 𝑥𝑖 ≥ 0

−
𝑨

𝑩
𝑖𝑓 𝑥𝑖 < 0

→ 𝒇 = 𝑵

𝑨 = 𝑩𝒇𝑇𝑳𝒇 ≠ 𝑨 + 𝑩 
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩
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NormalizedCut

Balancing the clusters by considering the degrees of nodes

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩


𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

NP hard of assignment 𝑓𝑖.

min
𝐴,𝐵

𝒇𝑇𝑳𝒇 = 𝑣𝑜𝑙 𝒱 𝑁𝐶𝑢𝑡 𝑨,𝑩 , 𝑓𝑖 ∈
𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
, −

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)

𝒇𝑇𝑳𝒇 =
𝑖,𝑗
𝑤𝑖𝑗

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
+

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)

2

=
𝑖,𝑗
𝑤𝑖𝑗

𝑣𝑜𝑙 𝑩 + 𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑨) 𝑣𝑜𝑙(𝑩)

2

𝑣𝑜𝑙 𝑩 = 𝑣𝑜𝑙(𝑨)
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NormalizedCut

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩


𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

(𝑫𝒇)𝑇𝟏𝑁 = 0, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

Necessary condition for 𝑓𝑖 ∈
𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
, −

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
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Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝑫𝒇 ⊥ 𝟏𝑵, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

NormalizedCut

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩


𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

𝒇𝑇𝑳𝒇 = 𝑣𝑜𝑙 𝒱 𝑁𝐶𝑢𝑡 𝑨,𝑩 , (𝑫𝒇)𝑇𝟏𝑁 = 0, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱 ,



J. Y. Choi. SNU

Spectral Clustering: Approximating NormalizedCut

10

Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝑫𝒇 ⊥ 𝟏𝑵, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

Can we apply Rayleigh-Ritz now? Define 𝒉 = 𝑫𝟏/𝟐𝒇

Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑫−1/2𝑳𝑫−𝟏/𝟐𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉𝑇𝒉 = 𝑣𝑜𝑙 𝒱

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑳𝒔𝒚𝒎𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉 = 𝑣𝑜𝑙 𝒱
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Optimization formulation for NormalizedCut

Solution by Rayleigh-Ritz? 𝒉 = 𝒖𝟐,𝑳𝒔𝒚𝒎 , 𝒇 = 𝑫−𝟏/𝟐𝒉

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑳𝒔𝒚𝒎𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉 = 𝑣𝑜𝑙 𝒱

𝑓𝑖 ←

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 ℎ𝑖 ≥ 0

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 ℎ𝑖 < 0

↔ 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱 → 𝑣𝑜𝑙 𝑨 = 𝑣𝑜𝑙(𝑩)

→ eigenvector of 𝑳𝒓𝒘
→ 𝐿𝑢 = 𝜆𝐷𝑢
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Outline of Lecture

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding

 Semi-supervised Learning (SSL) 

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 
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 Semi-supervised Learning (SSL) : conti.

 SSL with Graph using Regularized Harmonic 

Functions 

 SSL with Graph using Soft Harmonic 

Functions 

 SSL with Graph using Manifold 

Regularization

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph 

Cuts

 Online SSL and SSL for large graph 

 Graph Convolution Networks (GCN)

 Graph Filtering in GCN

 Graph Pooling in GCN

 Spectral Filtering in GCN

 Spatial Filtering  in GCN

 Recent GCN papers
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ℝ𝑑 ⟹ℝ𝑚
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problem: definition reduction/manifold learning

Given  {𝒙𝑖}𝑖=1
𝑁 from  ℝ𝑑, find {𝒚𝑖}𝑖=1

𝑁 in  ℝ𝑚, where  𝑚 ≪ 𝑑. 

 What do we know about the dimensionality reduction?

 representation/visualization (2𝐷 𝑜𝑟 3𝐷 )

 an old example: globe to a map (3𝐷 → 2𝐷)
 often assuming ℳ ⊂ ℝ𝑑

 feature extraction

 linear vs. nonlinear dimensionality reduction

 What do we know about linear vs. nonlinear methods?

 linear: ICA, PCA, LDA, SVD, ...

 nonlinear often preserve only local distances
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𝑑 𝒚𝑖 , 𝒚𝑗 = 𝑑 𝒙𝑖 , 𝒙𝑗 only if 𝑑 𝒙𝑖 , 𝒙𝑗 and 𝑑 𝒚𝑖 , 𝒚𝑗 are small.

min
𝑖,𝑗
𝑤𝑖𝑗 𝒚𝑖 − 𝒚𝒋

2

𝒚𝑖 looks similar to 𝒚𝒋? 

Yes in Euclidean space, but No in Manifolds 
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean representation of manifold 𝓧 around 𝒙

Manifolds Tangent space

Geometric deep learning on graphs and manifolds, Michael Bronstein et al., 

SIAM Tutorial 12 July 2018, Portland

https://www.dropbox.com/s/99eyutemrdb17kj/SIAM 2018.pdf?dl=0
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean 

representation of manifold 𝓧 around 𝒙

 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

Tangent space
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean 

representation of manifold 𝓧 around 𝒙

 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

 Scalar fields 𝑓:𝓧 → ℝ and

Vector fields 𝐹:𝓧 → 𝑇𝒙𝓧
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 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

 Scalar fields 𝑓:𝓧 → ℝ and

Vector fields 𝐹:𝓧 → 𝑇𝒙𝓧

 Hilbert spaces with inner products

< 𝑓, 𝑔 >𝐿2(𝓧,𝒙)= න𝑓 𝒙 𝑔 𝒙 𝑑𝒙

< 𝐹, 𝐺 >𝐿2(𝑇𝓧,𝒙)= න < 𝐹(𝒙), 𝐺(𝒙) >𝑇𝒙𝓧 𝑑𝒙

𝐿2(𝓧, 𝝁):
square integrable
in measure space 𝓧
w.r.t. measure 𝝁. 

Is 𝑓 𝑥 = 1/𝑡 in 𝐿2( 𝟎, 𝟏 , 𝒙)?
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 Laplacian ∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

(ex) Let 𝐹 be a differentiable vector field

𝐅 = 𝐹𝑥𝐢 + 𝐹𝑦𝐣 + 𝐹𝑧𝐤

Then

div 𝐅 =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧

Book: Laplacian on Riemannian Manifold 

https://books.google.co.kr/books?hl=ko&lr=&id=gzJ6Vn0y7XQC&oi=fnd&pg=PR5&dq=riemannian+manifold+laplacian&ots=hFgNj2Obto&sig=PNPLvLLYgtfwRSyMjWqAOj_m48g#v=onepage&q=riemannian%20manifold%20laplacian&f=false
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 Laplacian∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

 Manifold Laplacian is self-adjoint

< ∆𝑓, 𝑓 >𝐿2(𝓧)=< 𝑓, ∆𝑓 >𝐿2(𝓧)
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 Laplacian∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

 Laplacian is self-adjoint

< ∆𝑓, 𝑓 >𝐿2(𝓧)=< 𝑓, ∆𝑓 >𝐿2(𝓧)

 Dirichlet energy of 𝑓

< 𝛻𝑓, 𝛻𝑓 >𝐿2(𝑇𝓧)= න𝑓(𝒙) ∆𝑓 𝒙 𝑑𝒙 ⟺ 𝒇𝑇 𝑳𝒇

Laplacian Eigenmaps for Dim. Reduction (Belken et al., ohio-state doc., 2002)

http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf
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Step 1 (Adjacency Graph): Given 𝑁 points 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵 in 𝑅𝑙, we 

construct a graph of 𝑁 nodes 𝒙𝒊 and weighted edges 𝑤𝒊𝒋 , where

𝑤𝒊𝒋 = ቐ𝒆
− 𝒙𝒊−𝒙𝒋

𝟐

𝒕 or 1 𝑖𝑓
0 𝑜.𝑤.

𝒙𝑖 − 𝒙𝑗 ≤ 𝜖 or 𝑗 ∈ 𝒌𝑵𝑵𝑖

Step 2: Solve generalized eigenproblem (Normalized Cut):

𝑳𝒇 = 𝝀𝑫𝒇 → 𝒇𝟏, 𝒇𝟐, … , 𝒇𝑵 , where 0 = 𝜆1 ≤ … ≤ 𝜆𝑁

Step 3: Assign 𝑚 new coordinates: use 𝑚 eigenvectors for embedding 𝒙𝒊 in  

𝑚 dimensional Euclidean space.

𝒙𝒊 → 𝒇2(𝑖), … , 𝒇𝑚+1(𝑖)

Laplacian Eigenmaps for Dim. Reduction (Belken et al., ohio-state doc., 2002)

http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf
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Swiss Roll 2D embeddings

𝑁 −nearest neighbors, 𝑡: heat kernel parameter
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Laplacian-eigenmap-diffusion-map-manifold-learning, (Taylor, Mathworks, 
2002)

https://kr.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-diffusion-map-manifold-learning
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SSL
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Semi-supervised learning: How is it possible?
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This is how children learn! hypothesis



J. Y. Choi. SNU

Semi-supervised learning (SSL)

29

SSL problem: definition

Given  {𝒙𝑖}𝑖=1
𝑁 from  ℝ𝑑 and {𝑦𝑖}𝑖=1

𝑛 , with  𝑛 ≪ 𝑁, find {𝑦𝑖}𝑖=𝑛+1
𝑁 (transductive)

or find 𝒇 predicting 𝑦𝑖 𝑦𝑖 = 𝒇 𝒙𝑖 , 𝑖 = 𝑛 + 1,… ,𝑁} well (inductive).  

Some facts about SSL

 assumes that the unlabeled data is useful

 works with data geometry assumptions

 cluster assumption — low-density separation

 manifold assumption

 smoothness assumptions, …

 inductive or transductive/out-of-sample extension
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SSL: Self-Training

Input: ℒ = {𝒙𝑖 , 𝑦𝑖}𝑖=1
𝑛 and  𝒰 = {𝒙𝑖}𝑖=𝑛+1

𝑁

Repeat: 

 train 𝒇 using ℒ
 apply 𝒇 to some of 𝒰 and add them to ℒ

What are the properties of self-training? 

 heavily depends on the classifier

 nobody uses it anymore

 errors propagate (unless the clusters are well separated)
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SSL: Self-Training : Bad Case
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margin

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 < 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 > 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝟎

Maximal Margin Hyperplane = Optimal Hyperplane
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 What is manifold learning?

 What is Riemannian Manifold?

 What is the role of heat kernel?

 What is cluster assumption for semi-supervised learning?

 What is manifold assumption for semi-supervised learning?


