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Review: Summary questions of the last Lecture
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 Explain the meaning of Spectral Clustering in one sentence. Why 

spectral?

→It means that the clustering of nodes in a graph is done on the basis of 

frequency components of the graph signal representing the cluster 

labels of the nodes. 

 What is represented by the solution of Laplacian formulation relaxing 

Balanced Graph cut problem?

→It represents the second eigenvector of an appropriate Laplacian, which 

gives the given balancing condition.

 What does the solution of MinCut problem mean?

→It is the second eigenvector of Laplacian, which gives the  balanced 

cardinalities of the clustered groups.

 What does the solution of NormalizedCut problem mean?

 It is the second eigenvector of Symetric Laplacian, which gives the  

balanced volumes of the clustered groups.
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Spectral Clustering: Relaxing Balanced Cuts
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Optimization formulation for spectral clustering

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 ⊥ 𝟏𝑵, 𝒇 = 𝑵

The solution

𝜆2 = 𝐦𝐢𝐧
𝒙𝑇𝒙=𝟏, 𝒙⊥𝒖1

𝒙𝑇𝑳𝒙,  where 𝒖1 = 𝟏𝑵 for 𝜆1 = 0

→ second eigenvector 𝒙 of  𝑳

Since  the elements in 𝒙 are not integer and 𝒙 = 𝟏, 𝒇 can be obtained by 

𝑓𝑖 = ቊ
1 𝑖𝑓 𝑥𝑖 ≥ 0
−1 𝑖𝑓 𝑥𝑖 < 0

→ 𝒇 = 𝑵

𝑓𝑖∈ {1,−1}

𝑨 = 𝑩
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RatioCut

Define graph function 𝒇 for cluster membership of RatioCut: 𝑓𝑖 = ൞

𝑩

𝑨
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑨

𝑩
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩

𝒇𝑇𝑳𝒇 =
1

2
෍

𝑖,𝑗
𝑤𝑖𝑗 (𝑓𝑖 − 𝑓𝑗)

2= 𝑨 + 𝑩 𝑅𝐶𝑢𝑡 𝑨,𝑩

Since 𝑨 + 𝑩 is constant,   min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝒇

𝒇𝑇𝑳𝒇,

subject to 𝑓𝑖 ∈
𝑩

𝑨
, −

𝑨

𝑩

Still NP hard…Require relaxation.

𝑨 = 𝑩
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Optimization formulation for RatioCut (same with balanced mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to, 𝑓𝑖∈ 𝑅, 𝒇 = 𝑵

𝑠. 𝑡. 𝑓𝑖 =

𝑩

𝑨
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑨

𝑩
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑅𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

𝒇𝑇𝑳𝒇

𝒇 𝟐 = σ𝑖 𝑓𝑖
2 = 𝑨

𝑩

𝑨
+ 𝑩

𝑨

𝑩
= 𝑨 + 𝑩 = 𝑵 → not sufficient for 𝑓𝑖∈

𝑩

𝑨
, −

𝑨

𝑩

𝑨 = 𝑩𝒇𝑇𝑳𝒇 ≠ 𝑨 + 𝑩 ෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩
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Optimization formulation for RatioCut (same with balanced Mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 ⊥ 𝟏𝑵, 𝒇 = 𝑵

𝑨 = 𝑩 → ෍
𝑖
𝑓𝑖 = 0 ↔ 𝒇 ⊥ 𝟏𝑵

Optimization formulation for RatioCut (same with balanced mincut)

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝒇 = 𝑵
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The solution

𝜆2 = 𝐦𝐢𝐧
𝒙𝑇𝒙=𝟏, 𝒙⊥𝒖1

𝒙𝑇𝑳𝒙,  where 𝒖1 = 𝟏𝑵 for 𝜆1 = 0.

→ second eigenvector 𝒙 of  𝑳

Since  the elements in 𝒙 are not integer and 𝒙 = 𝟏, 𝒇 can be obtained by 

𝑓𝑖 =

𝑩

𝑨
𝑖𝑓 𝑥𝑖 ≥ 0

−
𝑨

𝑩
𝑖𝑓 𝑥𝑖 < 0

→ 𝒇 = 𝑵

𝑨 = 𝑩𝒇𝑇𝑳𝒇 ≠ 𝑨 + 𝑩 ෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑨
+

1

𝑩
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NormalizedCut

Balancing the clusters by considering the degrees of nodes

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

NP hard of assignment 𝑓𝑖.

min
𝐴,𝐵

𝒇𝑇𝑳𝒇 = 𝑣𝑜𝑙 𝒱 𝑁𝐶𝑢𝑡 𝑨,𝑩 , 𝑓𝑖 ∈
𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
, −

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)

𝒇𝑇𝑳𝒇 =෍
𝑖,𝑗
𝑤𝑖𝑗

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
+

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)

2

=෍
𝑖,𝑗
𝑤𝑖𝑗

𝑣𝑜𝑙 𝑩 + 𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑨) 𝑣𝑜𝑙(𝑩)

2

𝑣𝑜𝑙 𝑩 = 𝑣𝑜𝑙(𝑨)



J. Y. Choi. SNU

Spectral Clustering: Approximating NormalizedCut

8

NormalizedCut

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

(𝑫𝒇)𝑇𝟏𝑁 = 0, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

Necessary condition for 𝑓𝑖 ∈
𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
, −

𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
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Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝑫𝒇 ⊥ 𝟏𝑵, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

NormalizedCut

Define graph function 𝒇 for cluster membership of NCut: 𝑓𝑖 = ൞

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 𝑣𝑖 ∈ 𝑨

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 𝑣𝑖 ∈ 𝑩

min
𝑨,𝑩

𝑁𝐶𝑢𝑡 𝑨,𝑩 = min
𝑨,𝑩

෍
𝑖∈𝑨,𝑗∈𝑩

𝑤𝑖𝑗
1

𝑣𝑜𝑙(𝑨)
+

1

𝑣𝑜𝑙(𝑩)

𝒇𝑇𝑳𝒇 = 𝑣𝑜𝑙 𝒱 𝑁𝐶𝑢𝑡 𝑨,𝑩 , (𝑫𝒇)𝑇𝟏𝑁 = 0, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱 ,
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Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒇

𝒇𝑇𝑳𝒇 subject to 𝑓𝑖∈ 𝑅, 𝑫𝒇 ⊥ 𝟏𝑵, 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱

Can we apply Rayleigh-Ritz now? Define 𝒉 = 𝑫𝟏/𝟐𝒇

Optimization formulation for NormalizedCut

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑫−1/2𝑳𝑫−𝟏/𝟐𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉𝑇𝒉 = 𝑣𝑜𝑙 𝒱

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑳𝒔𝒚𝒎𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉 = 𝑣𝑜𝑙 𝒱
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Optimization formulation for NormalizedCut

Solution by Rayleigh-Ritz? 𝒉 = 𝒖𝟐,𝑳𝒔𝒚𝒎 , 𝒇 = 𝑫−𝟏/𝟐𝒉

𝐦𝐢𝐧
𝒉

𝒉𝑇𝑳𝒔𝒚𝒎𝒉 subject to ℎ𝑖∈ 𝑅, 𝒉 ⊥ 𝒖𝟏,𝑳𝒔𝒚𝒎 , 𝒉 = 𝑣𝑜𝑙 𝒱

𝑓𝑖 ←

𝑣𝑜𝑙(𝑩)

𝑣𝑜𝑙(𝑨)
𝑖𝑓 ℎ𝑖 ≥ 0

−
𝑣𝑜𝑙(𝑨)

𝑣𝑜𝑙(𝑩)
𝑖𝑓 ℎ𝑖 < 0

↔ 𝒇𝑇𝑫𝒇 = 𝑣𝑜𝑙 𝒱 → 𝑣𝑜𝑙 𝑨 = 𝑣𝑜𝑙(𝑩)

→ eigenvector of 𝑳𝒓𝒘
→ 𝐿𝑢 = 𝜆𝐷𝑢
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Outline of Lecture

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding

 Semi-supervised Learning (SSL) 

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 

12

 Semi-supervised Learning (SSL) : conti.

 SSL with Graph using Regularized Harmonic 

Functions 

 SSL with Graph using Soft Harmonic 

Functions 

 SSL with Graph using Manifold 

Regularization

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph 

Cuts

 Online SSL and SSL for large graph 

 Graph Convolution Networks (GCN)

 Graph Filtering in GCN

 Graph Pooling in GCN

 Spectral Filtering in GCN

 Spatial Filtering  in GCN

 Recent GCN papers
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ℝ𝑑 ⟹ℝ𝑚
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problem: definition reduction/manifold learning

Given  {𝒙𝑖}𝑖=1
𝑁 from  ℝ𝑑, find {𝒚𝑖}𝑖=1

𝑁 in  ℝ𝑚, where  𝑚 ≪ 𝑑. 

 What do we know about the dimensionality reduction?

 representation/visualization (2𝐷 𝑜𝑟 3𝐷 )

 an old example: globe to a map (3𝐷 → 2𝐷)
 often assuming ℳ ⊂ ℝ𝑑

 feature extraction

 linear vs. nonlinear dimensionality reduction

 What do we know about linear vs. nonlinear methods?

 linear: ICA, PCA, LDA, SVD, ...

 nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear
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Manifold Learning: Preserving (just) local distances
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𝑑 𝒚𝑖 , 𝒚𝑗 = 𝑑 𝒙𝑖 , 𝒙𝑗 only if 𝑑 𝒙𝑖 , 𝒙𝑗 and 𝑑 𝒚𝑖 , 𝒚𝑗 are small.

min෍
𝑖,𝑗
𝑤𝑖𝑗 𝒚𝑖 − 𝒚𝒋

2

𝒚𝑖 looks similar to 𝒚𝒋? 

Yes in Euclidean space, but No in Manifolds 
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Manifold Learning: Riemannian manifolds
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean representation of manifold 𝓧 around 𝒙

Manifolds Tangent space

Geometric deep learning on graphs and manifolds, Michael Bronstein et al., 

SIAM Tutorial 12 July 2018, Portland

https://www.dropbox.com/s/99eyutemrdb17kj/SIAM 2018.pdf?dl=0


J. Y. Choi. SNU

Manifold Learning: Riemannian manifolds
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean 

representation of manifold 𝓧 around 𝒙

 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

Tangent space
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Manifold Learning: Riemannian manifolds
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 Manifold 𝓧 = topological space

 Tangent space 𝑇𝒙𝓧 = local Euclidean 

representation of manifold 𝓧 around 𝒙

 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

 Scalar fields 𝑓:𝓧 → ℝ and

Vector fields 𝐹:𝓧 → 𝑇𝒙𝓧
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 Riemannian metric describes the local 

intrinsic structure at 𝒙
<∙,∙>𝑇𝒙𝓧: 𝑇𝒙𝓧× 𝑇𝒙𝓧 → ℝ

 Scalar fields 𝑓:𝓧 → ℝ and

Vector fields 𝐹:𝓧 → 𝑇𝒙𝓧

 Hilbert spaces with inner products

< 𝑓, 𝑔 >𝐿2(𝓧,𝒙)= න𝑓 𝒙 𝑔 𝒙 𝑑𝒙

< 𝐹, 𝐺 >𝐿2(𝑇𝓧,𝒙)= න < 𝐹(𝒙), 𝐺(𝒙) >𝑇𝒙𝓧 𝑑𝒙

𝐿2(𝓧, 𝝁):
square integrable
in measure space 𝓧
w.r.t. measure 𝝁. 

Is 𝑓 𝑥 = 1/𝑡 in 𝐿2( 𝟎, 𝟏 , 𝒙)?
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 Laplacian ∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

(ex) Let 𝐹 be a differentiable vector field

𝐅 = 𝐹𝑥𝐢 + 𝐹𝑦𝐣 + 𝐹𝑧𝐤

Then

div 𝐅 =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧

Book: Laplacian on Riemannian Manifold 

https://books.google.co.kr/books?hl=ko&lr=&id=gzJ6Vn0y7XQC&oi=fnd&pg=PR5&dq=riemannian+manifold+laplacian&ots=hFgNj2Obto&sig=PNPLvLLYgtfwRSyMjWqAOj_m48g#v=onepage&q=riemannian%20manifold%20laplacian&f=false
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 Laplacian∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

 Manifold Laplacian is self-adjoint

< ∆𝑓, 𝑓 >𝐿2(𝓧)=< 𝑓, ∆𝑓 >𝐿2(𝓧)



J. Y. Choi. SNU

Manifold Learning: Manifold Laplacian
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 Laplacian∆: 𝐿2(𝓧) → 𝐿2(𝓧)
∆𝑓 𝒙 = −𝑑𝑖𝑣𝛻𝑓(𝒙)

where gradient 𝛻:𝐿2(𝓧) → 𝐿2(𝑇𝓧)
and divergence div:𝐿2(𝑇𝓧) → 𝐿2(𝓧)
are adjoint operators, i.e.,

< 𝛻𝑓, 𝐺 >𝐿2(𝑇𝓧)=< 𝑓,−𝑑𝑖𝑣 𝐺 >𝐿2(𝓧)

 Laplacian is self-adjoint

< ∆𝑓, 𝑓 >𝐿2(𝓧)=< 𝑓, ∆𝑓 >𝐿2(𝓧)

 Dirichlet energy of 𝑓

< 𝛻𝑓, 𝛻𝑓 >𝐿2(𝑇𝓧)= න𝑓(𝒙) ∆𝑓 𝒙 𝑑𝒙 ⟺ 𝒇𝑇 𝑳𝒇

Laplacian Eigenmaps for Dim. Reduction (Belken et al., ohio-state doc., 2002)

http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf
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Step 1 (Adjacency Graph): Given 𝑁 points 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵 in 𝑅𝑙, we 

construct a graph of 𝑁 nodes 𝒙𝒊 and weighted edges 𝑤𝒊𝒋 , where

𝑤𝒊𝒋 = ቐ𝒆
− 𝒙𝒊−𝒙𝒋

𝟐

𝒕 or 1 𝑖𝑓
0 𝑜.𝑤.

𝒙𝑖 − 𝒙𝑗 ≤ 𝜖 or 𝑗 ∈ 𝒌𝑵𝑵𝑖

Step 2: Solve generalized eigenproblem (Normalized Cut):

𝑳𝒇 = 𝝀𝑫𝒇 → 𝒇𝟏, 𝒇𝟐, … , 𝒇𝑵 , where 0 = 𝜆1 ≤ … ≤ 𝜆𝑁

Step 3: Assign 𝑚 new coordinates: use 𝑚 eigenvectors for embedding 𝒙𝒊 in  

𝑚 dimensional Euclidean space.

𝒙𝒊 → 𝒇2(𝑖), … , 𝒇𝑚+1(𝑖)

Laplacian Eigenmaps for Dim. Reduction (Belken et al., ohio-state doc., 2002)

http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf
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Swiss Roll 2D embeddings

𝑁 −nearest neighbors, 𝑡: heat kernel parameter
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Laplacian-eigenmap-diffusion-map-manifold-learning, (Taylor, Mathworks, 
2002)

https://kr.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-diffusion-map-manifold-learning
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SSL
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This is how children learn! hypothesis
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SSL problem: definition

Given  {𝒙𝑖}𝑖=1
𝑁 from  ℝ𝑑 and {𝑦𝑖}𝑖=1

𝑛 , with  𝑛 ≪ 𝑁, find {𝑦𝑖}𝑖=𝑛+1
𝑁 (transductive)

or find 𝒇 predicting 𝑦𝑖 𝑦𝑖 = 𝒇 𝒙𝑖 , 𝑖 = 𝑛 + 1,… ,𝑁} well (inductive).  

Some facts about SSL

 assumes that the unlabeled data is useful

 works with data geometry assumptions

 cluster assumption — low-density separation

 manifold assumption

 smoothness assumptions, …

 inductive or transductive/out-of-sample extension
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SSL: Self-Training

Input: ℒ = {𝒙𝑖 , 𝑦𝑖}𝑖=1
𝑛 and  𝒰 = {𝒙𝑖}𝑖=𝑛+1

𝑁

Repeat: 

 train 𝒇 using ℒ
 apply 𝒇 to some of 𝒰 and add them to ℒ

What are the properties of self-training? 

 heavily depends on the classifier

 nobody uses it anymore

 errors propagate (unless the clusters are well separated)
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margin

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 < 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 > 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝟎

Maximal Margin Hyperplane = Optimal Hyperplane
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 What is manifold learning?

 What is Riemannian Manifold?

 What is the role of heat kernel?

 What is cluster assumption for semi-supervised learning?

 What is manifold assumption for semi-supervised learning?


