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Outline of Lecture (1)

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding

 Semi-supervised Learning (SSL) 

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 
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 Semi-supervised Learning (SSL) : conti.

 SSL with Graph using Regularized Harmonic 

Functions 

 SSL with Graph using Soft Harmonic 

Functions 

 SSL with Graph using Manifold 

Regularization

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph 

Cuts

 Online SSL and SSL for large graph 

 Graph Convolution Networks (GCN)

 Graph Filtering in GCN

 Graph Pooling in GCN

 Spectral Filtering in GCN

 Spatial Filtering  in GCN

 Recent GCN papers
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margin

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 < 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 > 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝟎

Maximal Margin Hyperplane = Optimal Hyperplane
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max-margin classification: separable case

min
𝒘,𝑏

𝒘 2

𝒔. 𝒕. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1, ∀ 𝑖 = 1,… , 𝑛

max-margin classification: non-separable case

min
𝒘,𝑏

𝜆 𝒘 2 +σ𝑖 𝜉𝑖

𝒔. 𝒕. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀ 𝑖 = 1,… , 𝑛

𝜉𝑖 ≥ 0, ∀ 𝑖 = 1,… , 𝑛

margin

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 < 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 > 𝟎

𝒇 𝒙 = 𝒘𝑻𝒙 + 𝑏 = 𝟎

Maximal Margin Hyperplane = Optimal

Hyperplane
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max-margin classification: non-separable case

min
𝒘,𝑏

𝜆 𝒘 2 +σ𝑖 𝜉𝑖

𝒔. 𝒕. 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , ∀ 𝑖 = 1,… , 𝑛

𝜉𝑖 ≥ 0, ∀ 𝑖 = 1,… , 𝑛

Unconstrained formulation using hinge loss:

min
𝒘,𝑏

𝜆 𝒘 2 +σ𝑖max(1 −𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 , 0)

General formulation:

min
𝒘,𝑏

𝜆Ω(𝒇(𝒘, 𝑏)) +෍
𝑖
Φ(𝒙𝑖 , 𝑦𝑖 , 𝒇(𝒘, 𝑏; 𝒙𝑖))
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hinge loss

Φ(𝒙𝑖 , 𝑦𝑖 , 𝒇(𝒘, 𝑏; 𝒙𝑖)) = max(1 −𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 , 0)
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Unconstrained formulation using hinge loss:

min
𝒘,𝑏

𝜆 𝒘 2 +σ
𝑖=1
𝑛𝑙 max(1 −𝑦𝑖 𝒘

𝑇𝒙𝑖 + 𝑏 , 0)

How to incorporate unlabeled examples?

Prediction of 𝑓 for (any) 𝒙? ො𝑦𝑖 = 𝑠𝑔𝑛 𝑓 𝒙𝑖 = 𝑠𝑔𝑛(𝒘𝑇𝒙𝑖 + 𝑏)

Φ(𝒙𝑖 , 𝑦𝑖 , 𝒇(𝒘, 𝑏; 𝒙𝑖)) = max(1 − ො𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 , 0)

= max(1 −𝑠𝑔𝑛(𝒘𝑇𝒙𝑖 + 𝑏) 𝒘𝑇𝒙𝑖 + 𝑏 , 0)

= max(1 − 𝒘𝑇𝒙𝑖 + 𝑏 , 0) hat loss 

Use ො𝑦𝑖 instead of 𝑦𝑖
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What is the difference in the objectives?

What does hinge loss penalize?

What does hat loss penalize?
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Formulation fo SSL via SVM

min
𝒘,𝑏

෍
𝑖=1

𝑛𝑙
max(1 −𝑦𝑖 𝒘

𝑇𝒙𝑖 + 𝑏 , 0) + 𝜆1 𝒘 2

+𝜆2σ𝑖=𝑛𝑙+1
𝑛𝑙+𝑛𝑢 max(1 − 𝒘𝑇𝒙𝑖 + 𝑏 , 0)

 Labelled data term works as a loss to learn the data 

 Unlabeled data term works as a regularizer to reduce the effect of noisy data.

 The term 𝒘 works as a regularizer for a large margin.
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with graphs and harmonic functions
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SSL(𝒢)
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Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts

http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

Some insights from vision research in 1980s

http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
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MinCut SSL: an idea similar to MinCut clustering

Where is the link?

What is the formal statement? We look for 𝑓 𝑥 ∈ ±1

𝑐𝑢𝑡 =෍
𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓 𝒙𝑖 − 𝑓 𝒙𝑗

2
= 𝒇𝑇𝑳𝒇 = 𝛺(𝑓)

min
𝑓 𝒙𝑖 ; 𝒙𝑖∈𝓤

𝛺(𝑓) minimal smoothness for unsupervised clustering

What to do for semi-supervised learning?
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Inductive SSL with graph: using 𝑓 𝜽; 𝒙𝑖 classifier with parameters 𝜽

min
𝜽

𝜆෍
𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓 𝜽; 𝒙𝑖 − 𝑓 𝜽; 𝒙𝑗

2
+ 𝛾෍

𝑖

𝑛𝑙
𝑓 𝜽; 𝒙𝑖 − 𝑦𝑖

2

General Formulation

Regularization: Laplacian smoothing

𝛺 {𝑓 𝜽; 𝒙𝑖 }𝑖=1
𝑛𝑙+𝑛𝑢 =෍

𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓 𝜽; 𝒙𝑖 − 𝑓 𝜽; 𝒙𝑗

2
= 𝒇𝑇𝑳𝒇

Loss:

Φ 𝑓 𝜽; 𝒙𝑖 , 𝑦𝑖 = 𝑓 𝜽; 𝒙𝑖 − 𝑦𝑖
2 ∀ 𝑖 ∈ 1,… , 𝑛𝑙
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Transductive SSL with graph: fixing 𝑓 𝒙𝑖 for 𝑖 ∈ ℒ

min
𝒇∈{±𝟏}𝑛𝑙+𝑛𝑢

𝜆෍
𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓 𝒙𝑖 − 𝑓 𝒙𝑗

2
+∞෍

𝑖

𝑛𝑙
𝑓 𝒙𝑖 − 𝑦𝑖

2

Solution: 

An integer program: NP hard

Can we use eigenvectors?  No. Why?           

We need a better way to reflect the confidence. 
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Relaxation: Transductive SSL with graph: fixing 𝑓 𝒙𝑖 for 𝑖 ∈ ℒ

min
𝒇∈𝑹𝑛𝑙+𝑛𝑢

𝜆෍
𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓 𝒙𝑖 − 𝑓 𝒙𝑗

2
+∞෍

𝑖

𝑛𝑙
𝑓 𝒙𝑖 − 𝑦𝑖

2

Naïve Solution

Right term solution:  constrain 𝑓 to match the supervised data

𝑓 𝒙𝑖 = 𝑦𝑖 ∀ 𝑖 ∈ {1,… , 𝑛𝑙}
Left term solution: enforce the solution 𝑓 to be harmonic (cf. aggregation, rw)

𝑓 𝒙𝑖 =
σ𝑖𝑗 𝑓(𝒙𝑗)𝑤𝑖𝑗

σ𝑖𝑗𝑤𝑖𝑗
∀ 𝑖 ∈ {𝑛𝑙 + 1,… , 𝑛𝑙+𝑛𝑢}

How can we handle unlabeled data?
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Properties of the relaxation from ±𝟏 to ℝ

 There is a closed form solution for 𝑓

 this solution is unique

 globally optimal

 𝑓(𝒙𝑖) may not be integer

 but we can threshold it

 electric-network interpretation

 random-walk interpretation
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Random walk interpretation :

1) start from the vertex you want to label and randomly walk

2)  𝑃 𝑗 𝑖 =
𝑤𝑖𝑗

σ𝑘𝑤𝑖𝑘
⟺𝑷 = 𝑫−𝟏𝑾

3) finish when a labeled vertex is hit                    𝑓 𝒙𝑖 =
σ𝑖𝑗 𝑓(𝒙𝑗)𝑤𝑖𝑗

σ𝑖𝑗𝑤𝑖𝑗

4)  𝑓(𝒙𝑖) is assigned by average of the labels of the hit vertices. 
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Iterative Solution: propagation

Step 1: Set 𝑓 to match the supervised data

𝑓 𝒙𝑖 = 𝑦𝑖 ∀ 𝑖 ∈ {1,… , 𝑛𝑙}
Step 2: Propagate iteratively (only for unlabeled)

𝑓 𝒙𝑖 ←
σ𝑖𝑗 𝑓(𝒙𝑗)𝑤𝑖𝑗

σ𝑖𝑗𝑤𝑖𝑗
∀ 𝑖 ∈ {𝑛𝑙 + 1,… , 𝑛𝑙+𝑛𝑢}

Properties: 

 this will converge to the harmonic solution
 we can set the initial values for unlabeled nodes arbitrarily
 an interesting option for large-scale data
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Closed form Solution:

Define 𝑓𝑖 ≜ 𝑓 𝒙𝑖 , 𝒇 ≜ [𝑓1, … , 𝑓𝑖 , … , 𝑓𝑛𝑙+𝑛𝑢]

𝛺 𝒇 =෍
𝑖,𝑗=1

𝑛𝑙+𝑛𝑢
𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
= 𝒇𝑇𝑳𝒇

Then, 𝑳 is a (𝑛𝑙+𝑛𝑢) × (𝑛𝑙+𝑛𝑢) matrix:

𝑳 =
𝑳𝑙𝑙 𝑳𝑙𝑢
𝑳𝑢𝑙 𝑳𝑢𝑢

The problem becomes 

min
𝒇

𝛺 𝒇 (= 𝒇𝑙
𝑇𝑳𝑙𝑙𝒇𝑙 + 𝒇𝑙

𝑇𝑳𝑙𝑢𝒇𝑢 + 𝒇𝑢
𝑇𝑳𝑢𝑙𝒇𝑙 + 𝒇𝑢

𝑇𝑳𝑢𝑢𝒇𝑢)

The solution can be obtained by

𝛻𝒇𝑢𝛺 𝒇 = 2𝑳𝑢𝑙𝒇𝑙 + 2𝑳𝑢𝑢𝒇𝑢 = 0

⟹ 𝒇𝑢 = 𝑳𝑢𝑢
−1 −𝑳𝑢𝑙𝒇𝑙 = 𝑳𝑢𝑢

−1(𝑾𝑢𝑙𝒇𝑙)
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Relation between closed form solution and random work

𝒇𝑢 = 𝑳𝑢𝑢
−1 𝑾𝑢𝑙𝒇𝑙 , 𝑷 = 𝑫−1𝑾

Note that 

𝑷 = 𝑫−1𝑾 → 𝑳 = 𝑫−𝑾 = 𝑫 𝐈 − 𝑫−1𝑾 = 𝑫 𝐈 − 𝑷

This yields

𝒇𝑢 = 𝐈 −𝑷𝒖𝑢
−1𝑫𝑢𝑢

−1 𝑫𝑢𝑢𝑷𝑢𝑙𝒇𝑙 = 𝐈 −𝑷𝒖𝑢
−1𝑷𝑢𝑙𝒇𝑙

For 𝑖 ∈ 𝒰, 

𝑓𝑖= 𝐈 −𝑷𝑢𝑢 𝑖𝑢
−1𝑷𝑢𝑙𝒇𝑙

= σ𝑗:𝑦𝑗=1
𝐈 −𝑷𝑢𝑢 𝑖𝑢

−1𝑷𝑢𝑗 − σ𝑗:𝑦𝑗=−1
𝐈 −𝑷𝑢𝑢 𝑖𝑢

−1𝑷𝑢𝑗

= 𝑝𝑖
(+1)

− 𝑝𝑖
−1



J. Y. Choi. SNU

SSL with Graphs: Regularized Harmonic Functions

21

For 𝑖 ∈ 𝒰, 

𝑓𝑖= 𝑝𝑖
(+1)

− 𝑝𝑖
−1

⟹𝑓𝑖= 𝑓𝑖 𝑠𝑔𝑛 𝑓𝑖 = 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 × 𝑙𝑎𝑏𝑒𝑙

What happens if an outlier sneaks in?

⟹ The prediction for the outlier can mislead the confidence

How to control the confidence of the inference?

⟹ Allow the random walk to die!

⟹ We add a sink to the graph, where

sink = artificial node with label 0.

We connect the sink to every other vertex.

What will the sink do in the predictions?
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Regularized Harmonic solution on the graph with sink

𝛻𝒇𝑢𝛺 𝒇 = 𝟎, 𝛺 𝒇 = 𝒇𝑇𝑳𝒇

𝑳𝑙𝑙 + 𝛾𝑔𝐈𝑛𝑙 𝑳𝑙𝑢 −𝛾𝑔𝟏𝑛𝑙×1
𝑳𝑢𝑙 𝑳𝑢𝑢 + 𝛾𝑔𝐈𝑛𝑢 −𝛾𝑔𝟏𝑛𝑢×1

−𝛾𝑔𝟏1×𝑛𝑙 −𝛾𝑔𝟏1×𝑛𝑢 (𝑛𝑙 + 𝑛𝑢)𝛾𝑔

𝒇𝑙
𝒇𝑢
0

=
⋮
𝟎𝑢
⋮

We can disregard the last column and row:

𝑳𝑙𝑙 + 𝛾𝑔𝐈𝑛𝑙 𝑳𝑙𝑢
𝑳𝑢𝑙 𝑳𝑢𝑢 + 𝛾𝑔𝐈𝑛𝑢

𝒇𝑙
𝒇𝑢

=
⋮
𝟎𝑢

⟹ 𝑳𝑢𝑙𝒇𝑙 + 𝑳𝑢𝑢 + 𝛾𝑔𝐈𝑛𝑢 𝒇𝑢 = 𝟎𝑢
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How do we compute this regularized random walk? 

𝒇𝑢 = (𝑳𝑢𝑢 + 𝛾𝑔𝐈)
−1 𝑾𝑢𝑙𝒇𝑙 ,

How does 𝛾𝑔 influence the solution?

What happens to sneaky outliers?
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Regularized HS objective with 𝑸 = 𝑳 + 𝛾𝑔𝐈 :

Define 𝑓𝑖 ≜ 𝑓 𝒙𝑖 , 𝒇 ≜ [𝑓𝑖 , … , 𝑓𝑛𝑙+𝑛𝑢]

min
𝒇∈ℝ𝑛𝑙+𝑛𝑢

∞෍
𝑖=1

𝑛𝑙
𝑓𝑖 − 𝑦𝑖

2 + 𝜆 𝒇𝑇𝑸𝒇

Soft constraints for 𝑓 𝒙𝑖 = 𝑦𝑖 , ∀𝑖 ∈ ℒ: ∞ is replaced by finite values

min
𝒇∈ℝ𝑛𝑙+𝑛𝑢

𝒇 − 𝒚 𝑇𝑪(𝒇 − 𝒚) + 𝒇𝑇𝑸𝒇

𝑪 is diagonal with 𝐶𝑖𝑖 = ቊ
𝐶𝑙 𝑓𝑜𝑟 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
𝐶𝑢 𝑓𝑜𝑟 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝒚 indicates pseudo-targets with 𝑦𝑖 = ቊ
𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

0 𝑓𝑜𝑟 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
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Closed form Soft Harmonic solution:

𝒇∗ = min
𝒇∈ℝ𝑛𝑙+𝑛𝑢

[ 𝒇 − 𝒚 𝑇𝑪 𝒇 − 𝒚 + 𝒇𝑇𝑸𝒇] → 𝒇∗ = (𝑪−1𝑸 + 𝐈)−1𝒚

What are the differences between hard and soft?

Not much different in practice.

Noisy labels may be smoothed by soft harmonic.

Generalization is improved by the sink node
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 What does hinge loss in SVM penalize?

 What does hat loss in SVM for semi-supervised learning penalize?

 Why can’t we use eigenvectors to solve MinCut-based SSL in graph? 

 What is the meaning of harmonic function in SSL?

 What is random work interpretation of harmonic function-based SSL in graph?

 What is a key point of regularized harmonic function-based SSL in graph? 

 What is a key point of soft harmonic function-based SSL in graph? 


