SSL Continue

semi-supervised learning

Outline of Lecture (1)

- Graph Spectral Theory
 - Definition of Graph
 - Graph Laplacian
 - Laplacian Smoothing
- Graph Node Clustering
 - Minimum Graph Cut
 - Ratio Graph Cut
 - Normalized Graph Cut
- Manifold Learning
 - Spectral Analysis in Riemannian Manifolds
 - Dimension Reduction, Node Embedding
- Semi-supervised Learning (SSL)
 - Self-Training Methods
 - SSL with SVM
 - SSL with Graph using MinCut
 - SSL with Graph using Harmonic Functions

- Semi-supervised Learning (SSL) : conti.
 - SSL with Graph using Regularized Harmonic Functions
 - SSL with Graph using Soft Harmonic Functions
 - SSL with Graph using Manifold Regularization
 - SSL with Graph using Laplacian SVMs
 - SSL with Graph using Max-Margin Graph Cuts
 - Online SSL and SSL for large graph
- Graph Convolution Networks (GCN)
 - Graph Filtering in GCN
 - Graph Pooling in GCN
 - Spectral Filtering in GCN
 - Spatial Filtering in GCN
- Recent GCN papers

max-margin classification: separable case

$$\min_{\boldsymbol{w},b} \|\boldsymbol{w}\|^2$$

s.t. $y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge 1, \quad \forall i = 1, ..., n$

Maximal Margin Hyperplane = Optimal Hyperplane

max-margin classification: non-separable case

$$\min_{\substack{\boldsymbol{w},b\\ \boldsymbol{w},b}} \lambda \|\boldsymbol{w}\|^2 + \sum_i \xi_i$$

s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i, \quad \forall i = 1, ..., n$
 $\xi_i \ge 0, \quad \forall i = 1, ..., n$

max-margin classification: non-separable case

$$\min_{\substack{\boldsymbol{w},b\\ \boldsymbol{w},b}} \lambda \|\boldsymbol{w}\|^2 + \sum_i \xi_i$$

s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i, \qquad \forall i = 1, ..., n$
 $\xi_i \ge 0, \forall i = 1, ..., n$

Unconstrained formulation using hinge loss:

$$\min_{\boldsymbol{w},b} \lambda \|\boldsymbol{w}\|^2 + \sum_i \max(1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b), 0)$$

General formulation:

$$\min_{\boldsymbol{w},\boldsymbol{b}} \lambda \Omega(\boldsymbol{f}(\boldsymbol{w},\boldsymbol{b})) + \sum_{i} \Phi(\boldsymbol{x}_{i},y_{i},\boldsymbol{f}(\boldsymbol{w},\boldsymbol{b};\boldsymbol{x}_{i}))$$

$$\Phi(\boldsymbol{x}_i, y_i, \boldsymbol{f}(\boldsymbol{w}, b; \boldsymbol{x}_i)) = \max(1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b), 0)$$

SSL: SVM: Unlabeled Examples

Unconstrained formulation using hinge loss:

$$\min_{\boldsymbol{w},b} \lambda \|\boldsymbol{w}\|^2 + \sum_{i=1}^{n_l} \max(1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b), 0)$$

How to incorporate unlabeled examples?

Prediction of f for (any) x? $\hat{y}_i = sgn(f(x_i)) = sgn(w^T x_i + b)$

Use \hat{y}_i instead of y_i

$$\Phi(\mathbf{x}_i, \mathbf{y}_i, \mathbf{f}(\mathbf{w}, b; \mathbf{x}_i)) = \max(1 - \hat{\mathbf{y}}_i(\mathbf{w}^T \mathbf{x}_i + b), 0)$$

= $\max(1 - sgn(\mathbf{w}^T \mathbf{x}_i + b)(\mathbf{w}^T \mathbf{x}_i + b), 0)$
= $\max(1 - |\mathbf{w}^T \mathbf{x}_i + b|, 0) \implies \text{hat loss}$

SSL: SVM: Unlabeled Examples

What does hat loss penalize?

SSL: SVM: Formulation

Formulation fo SSL via **SVM**

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max(1 - y_i(\mathbf{w}^T \mathbf{x}_i + b), 0) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max(1 - |\mathbf{w}^T \mathbf{x}_i + b|, 0)$$

- Labelled data term works as a loss to learn the data
- Unlabeled data term works as a regularizer to reduce the effect of noisy data.
- The term ||w|| works as a regularizer for a large margin.

SSL(G)

semi-supervised learning

with graphs and harmonic functions

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

Some insights from vision research in 1980s

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering

Where is the link?

What is the formal statement? We look for $f(x) \in \{\pm 1\}$

$$cut = \sum_{i,j=1}^{n_l+n_u} w_{ij} \left(f(\boldsymbol{x}_i) - f(\boldsymbol{x}_j) \right)^2 = \boldsymbol{f}^T \boldsymbol{L} \boldsymbol{f} = \boldsymbol{\Omega}(f)$$

 $\min_{f(x_i); x_i \in \boldsymbol{u}} \Omega(f) \implies \text{minimal smoothness for unsupervised clustering}$

What to do for semi-supervised learning?

SSL with Graphs: using $f(\theta; x_i)$

Inductive SSL with graph: using $f(\theta; x_i)$ classifier with parameters θ

$$\min_{\boldsymbol{\theta}} \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} \left(f(\boldsymbol{\theta}; \boldsymbol{x}_i) - f(\boldsymbol{\theta}; \boldsymbol{x}_j) \right)^2 + \gamma \sum_{i=1}^{n_l} (f(\boldsymbol{\theta}; \boldsymbol{x}_i) - y_i)^2$$

General Formulation

Regularization: Laplacian smoothing

$$\Omega\left(\left\{f(\boldsymbol{\theta};\boldsymbol{x}_{i})\right\}_{i=1}^{n_{l}+n_{u}}\right) = \sum_{i,j=1}^{n_{l}+n_{u}} w_{ij}\left(f(\boldsymbol{\theta};\boldsymbol{x}_{i}) - f(\boldsymbol{\theta};\boldsymbol{x}_{j})\right)^{2} = \boldsymbol{f}^{T}\boldsymbol{L}\boldsymbol{f}$$

Loss:

$$\Phi(f(\boldsymbol{\theta}; \boldsymbol{x}_i), y_i) = (f(\boldsymbol{\theta}; \boldsymbol{x}_i) - y_i)^2 \quad \forall i \in \{1, \dots, n_l\}$$

Transductive SSL with graph: fixing $f(x_i)$ for $i \in \mathcal{L}$

$$\min_{f \in \{\pm 1\}^{n_l + n_u}} \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(x_i) - f(x_j) \right)^2 + \infty \sum_i^{n_l} (f(x_i) - y_i)^2$$

Solution:

An integer program: NP hard

Can we use eigenvectors? No. Why?

We need a better way to reflect the confidence.

Relaxation: Transductive SSL with graph: fixing $f(x_i)$ for $i \in \mathcal{L}$

$$\min_{f \in \mathbb{R}^{n_l + n_u}} \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 + \infty \sum_i^{n_l} (f(\mathbf{x}_i) - y_i)^2$$

Naïve Solution

Right term solution: constrain *f* to match the supervised data

$$f(\boldsymbol{x}_i) = y_i \quad \forall i \in \{1, \dots, n_l\}$$

Left term solution: enforce the solution *f* to be harmonic (cf. aggregation, rw)

$$f(\boldsymbol{x}_i) = \frac{\sum_{ij} f(x_j) w_{ij}}{\sum_{ij} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_l + n_u\}$$

How can we handle unlabeled data?

Properties of the relaxation from ± 1 to \mathbb{R}

- There is a closed form solution for f
- this solution is unique
- globally optimal
- $f(x_i)$ may not be integer
 - but we can threshold it
- electric-network interpretation
- random-walk interpretation

(a) The electric network interpretation

(b) The random walk interpretation

Random walk interpretation :

1) start from the vertex you want to label and randomly walk

2)
$$P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \iff P = D^{-1}W$$

3) finish when a labeled vertex is hit

$$f(\boldsymbol{x}_i) = \frac{\sum_{ij} f(\boldsymbol{x}_j) w_{ij}}{\sum_{ij} w_{ij}}$$

4) $f(x_i)$ is assigned by average of the labels of the hit vertices.

Iterative Solution: propagation

Step 1: Set *f* to match the supervised data $f(x_i) = y_i \quad \forall i \in \{1, ..., n_l\}$ **Step 2:** Propagate iteratively (only for unlabeled) $f(x_i) \leftarrow \frac{\sum_{ij} f(x_j) w_{ij}}{\sum_{ij} w_{ij}} \quad \forall i \in \{n_l + 1, ..., n_l + n_u\}$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

Closed form Solution:

Define
$$f_i \triangleq f(\mathbf{x}_i), \mathbf{f} \triangleq [f_1, \dots, f_i, \dots, f_{n_l+n_u}]$$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f_i - f_j)^2 = \mathbf{f}^T \mathbf{L} \mathbf{f}$$
Then, \mathbf{L} is a $(n_l+n_u) \times (n_l+n_u)$ matrix:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix}$$

The problem becomes

$$\min_{f} \Omega(f) (= f_{l}^{T} L_{ll} f_{l} + f_{l}^{T} L_{lu} f_{u} + f_{u}^{T} L_{ul} f_{l} + f_{u}^{T} L_{uu} f_{u})$$

The solution can be obtained by

$$\nabla_{f_u} \Omega(f) = 2L_{ul} f_l + 2L_{uu} f_u = 0$$
$$\implies f_u = L_{uu}^{-1} (-L_{ul} f_l) = L_{uu}^{-1} (W_{ul} f_l)$$

Relation between closed form solution and random work

 $\boldsymbol{f}_u = \boldsymbol{L}_{uu}^{-1}(\boldsymbol{W}_{ul}\boldsymbol{f}_l), \qquad \boldsymbol{P} = \boldsymbol{D}^{-1}\boldsymbol{W}$

Note that

$$P = D^{-1}W \rightarrow L = D - W = D(I - D^{-1}W) = D(I - P)$$

This yields

$$f_{u} = (\mathbf{I} - P_{uu})^{-1} D_{uu}^{-1} (D_{uu} P_{ul} f_{l}) = (\mathbf{I} - P_{uu})^{-1} P_{ul} f_{l}$$

For $i \in \mathcal{U}$,

$$\begin{aligned} f_i &= (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{ul} f_l \\ &= \sum_{j:y_j = 1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj} - \sum_{j:y_j = -1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj} \\ &= p_i^{(+1)} - p_i^{(-1)} \end{aligned}$$

SSL with Graphs: Regularized Harmonic Functions

For $i \in \mathcal{U}$, $f_i = p_i^{(+1)} - p_i^{(-1)} \Longrightarrow f_i = |f_i| sgn(f_i) = confidence \times label$

What happens if an outlier sneaks in?

 \Rightarrow The prediction for the outlier can mislead the confidence

How to control the confidence of the inference?

- \Rightarrow Allow the random walk to die!
- ⇒ We add a sink to the graph, where sink = artificial node with label 0. We connect the sink to every other vertex.

What will the sink do in the predictions?

SSL with Graphs: Regularized Harmonic Functions

Regularized Harmonic solution on the graph with sink $\nabla_{f_u} \Omega(f) = \mathbf{0}, \quad \Omega(f) = f^T L f$

$$\begin{bmatrix} L_{ll} + \gamma_g \mathbf{I}_{n_l} & L_{lu} & -\gamma_g \mathbf{1}_{n_l \times 1} \end{bmatrix} \begin{bmatrix} f_l \end{bmatrix} \begin{bmatrix} \vdots \\ I_{ul} & L_{uu} + \gamma_g \mathbf{I}_{n_u} & -\gamma_g \mathbf{1}_{n_u \times 1} \end{bmatrix} \begin{bmatrix} f_l \end{bmatrix} = \begin{bmatrix} \mathbf{0}_u \\ \mathbf{0}_u \end{bmatrix} = \begin{bmatrix} -\gamma_g \mathbf{1}_{1 \times n_l} & -\gamma_g \mathbf{1}_{1 \times n_u} & (n_l + n_u)\gamma_g \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \vdots \end{bmatrix}$$

We can disregard the last column and row:

$$\begin{bmatrix} L_{ll} + \gamma_g \mathbf{I}_{n_l} & L_{lu} \\ L_{ul} & L_{uu} + \gamma_g \mathbf{I}_{n_u} \end{bmatrix} \begin{bmatrix} f_l \\ f_u \end{bmatrix} = \begin{bmatrix} \vdots \\ \mathbf{0}_u \end{bmatrix}$$
$$\implies L_{ul} f_l + (L_{uu} + \gamma_g \mathbf{I}_{n_u}) f_u = \mathbf{0}_u$$

SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk? $f_u = (L_{uu} + \gamma_g \mathbf{I})^{-1} (W_{ul} f_l),$

How does γ_q influence the solution?

What happens to sneaky outliers?

Regularized HS objective with
$$Q = L + \gamma_g I$$
:
Define $f_i \triangleq f(x_i), f \triangleq [f_i, ..., f_{n_l+n_u}]$
$$\min_{f \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f_i - y_i)^2 + \lambda f^T Q f$$

Soft constraints for $f(x_i) = y_i$, $\forall i \in \mathcal{L}: \infty$ is replaced by finite values $\min_{f \in \mathbb{R}^{n_l+n_u}} (f - y)^T C(f - y) + f^T Q f$

 $C \text{ is diagonal with } C_{ii} = \begin{cases} C_l & \text{for labeled examples} \\ C_u & \text{for unlabeled examples} \end{cases}$ $y \text{ indicates pseudo-targets with } y_i = \begin{cases} true \ label & \text{for labeled examples} \\ 0 & \text{for unlabeled examples} \end{cases}$

Closed form Soft Harmonic solution:

$$f^* = \min_{f \in \mathbb{R}^{n_l + n_u}} \left[(f - y)^T C(f - y) + f^T Q f \right] \to f^* = (C^{-1}Q + I)^{-1} y$$

What are the differences between hard and soft? Not much different in practice. Noisy labels may be smoothed by soft harmonic. Generalization is improved by the sink node

Summary questions on the lecture

- What does hinge loss in SVM penalize?
- What does hat loss in SVM for semi-supervised learning penalize?
- Why can't we use eigenvectors to solve MinCut-based SSL in graph?
- What is the meaning of harmonic function in SSL?
- What is random work interpretation of harmonic function-based SSL in graph?
- What is a key point of regularized harmonic function-based SSL in graph?
- What is a key point of soft harmonic function-based SSL in graph?