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Outline of Lecture (1)

=  Graph Spectral Theory

Definition of Graph
Graph Laplacian
Laplacian Smoothing

=  Graph Node Clustering

Minimum Graph Cut
Ratio Graph Cut
Normalized Graph Cut

=  Manifold Learning

Spectral Analysis in Riemannian Manifolds

Dimension Reduction, Node Embedding

=  Semi-supervised Learning (SSL)

Self-Training Methods

Semi-supervised Learning (SSL) : conti.

SSL with Graph using Regularized Harmonic
Functions

SSL with Graph using Soft Harmonic
Functions

SSL with SVM
SSL with Graph using MinCut
SSL with Graph using Harmonic Functions
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SSL with Graph using Manifold
Regularization

SSL with Graph using Laplacian SVMs

SSL with Graph using Max-Margin Graph
Cuts

Online SSL and SSL for large graph

Graph Convolution Networks (GCN)

Graph Filtering in GCN
Graph Pooling in GCN
Spectral Filtering in GCN

Spatial Filtering in GCN

Recent GCN papers




SSL: Classical SVM (Review)
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Maximal Margin Hyperplane = Optimal Hyperplane
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SSL: Classical SVM (Review)

max-margin classification: separable case

%0
. x) = wlx 000/
min ||w]|? fOmeT S e
w,b /2?7 0%
T T — / /| /
S. t- yl(W xl + b) 2 1, VL — 1, ...,Tl // f)=wlx+b>0
Vi
f(x)=wa+b‘=0

Maximal Margin Hyperplane = Optimal
Hyperplane

max-margin classification: non-separable case

min A|lwl||* + ;&
w,b

s.t. yyiwl'x; +b) =1 - ¢, Vi=1,..,n
fi = O, Vi= 1,...,77,
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SSL: Classical SVM (Review)

max-margin classification: non-separable case

min A||lw||? + 2 i
w,b

S.t. yi(wal- +b) >1 —fi, Vi= 1,...,7’l
fi > O, Vi= 1,...,7’l

Unconstrained formulation using hinge loss:

migl Allwl|l? + ¥; max(1 — y;(wlx; + b), 0)
w,

General formulation:

min 20(f(w, b)) + Zicb(xi,;vi,f(w, b; x,))
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SSL: Classical SVM (Review)
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hinge loss

D (x;, v, f(W, b; x;)) = max(1 —y;(W'x; + b),0)
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SSL: SVM: Unlabeled Examples

Unconstrained formulation using hinge loss:

I‘nvlgl AMlwl? + %%, max(1 — y;(wlx; + b), 0)

How to incorporate unlabeled examples?
Prediction of f for (any) x? 9; = sgn(f(x;)) = sgn(w'x; + b)

Use V; instead of y;
®(x;, vy, f(W, b; x)) = max(1 —7;(w'x; + b),0)
= max(1 —sgn(w’'x; + by(wlx; + b), 0)
= max(1 — |wlx; + b|,0) == hat loss

J. Y. Choi. SNU ;



SSL: SVM: Unlabeled Examples
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yf(x) fx)
(a) the hinge loss (b) the hat loss

What is the difference in the objectives?

What does hinge loss penalize?

What does hat loss penalize?
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SSL: SVM: Formulation

Formulation fo SSL via SVM

ny
minz max(1 —y;(wlx; + b),0) + A,||w]|?
i=1

w,b
_|_
+2 Nty max(1 — [w'x; + bl, 0)

= |abelled data term works as a loss to learn the data
= Unlabeled data term works as a regularizer to reduce the effect of noisy data.

= The term ||w|| works as a regularizer for a large margin.
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semi-supervised learning
with graphs and harmonic functions
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SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

Some insights from vision research in 1980s

N
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http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering oot
Where is the link? %%W/

What is the formal statement? We look for f(x) € {+1}

cut = Eéinu Wi (f(xi) — f(xj))z = fTLf = 0(f)

i,j=1

P n)nineu N(f) == minimal smoothness for unsupervised clustering
Xi), X

What to do for semi-supervised learning?
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SSL with Graphs: using f(0; x;)

SSL with graph: using f(0; x;) classifier with parameters 6

min Ay (F®x) = F(6i%)) 7Y ((65x) =)

General Formulation
Regularization: Laplacian smoothing

A @=L =) wy (F@x) ~ F(0:x)) = fTLf

Loss:
O(f(O;x),y) = (f(6;x;) —y)* Vie(L .. n}

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

Transductive SSL with graph: fixing fori e L

min,,, Ay (FG) = £(5)) e D () = 33

fe(x 1y

Solution:
An integer program: NP hard
Can we use eigenvectors? No. Why?

We need a better way to reflect the confidence.

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

Relaxation: Transductive SSL with graph: fixing f(x;) fori € £

min, Ay, wy(FG) = () 40 ) (k) =)

fERnl +Ny

Naive Solution
Right term solution: constrain f to match the supervised data
f(x,;) =Y ViE {1, ...,Tll}
Left term solution: enforce the solution f to be harmonic (cf. aggregation, rw)
f(x;) = 2ij Oy vie{n +1,.. n+ny,}
2 Wij
How can we handle unlabeled data?

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from +1to R

There Is a closed form solution for f
this solution is unigue
globally optimal
f (x;) may not be integer

* put we can threshold it
electric-network interpretation

random-walk interpretation

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

== +1 volt

(a) The electric network interpretation (b) The random walk interpretation

Random walk interpretation :
1) start from the vertex you want to label and randomly walk

2) P(]|l)—Zlek(=)P D~ w

3) finish when a labeled vertex is hit f(x;) =

4) f(x;) s assigned by average of the labels of the hit vertices.

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

iterative Solution: propagation

Step 1: Set f to match the supervised data

f(xl-) =Y Vie {1, ...,Tll}
Step 2: Propagate iteratively (only for unlabeled)

f(x;) < Z”Zf();]])]wu Vie{n +1,.., n+n,}
iyt

Properties:
= this will converge to the harmonic solution
= we can set the initial values for unlabeled nodes arbitrarily
» an interesting option for large-scale data

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

Closed form Solution:
Define f; = f(x;), f £ [f1, ) fir os fryamy,]
ni+ny 2 -
an=)  wilfi=£) =L
L,j=
Then, L is a (n;+n,) X (n;+n,) matrix:

= [fu Lw
Lul Luu
The problem becomes

mfin Q) (= f{l‘llfl + fTLlufu + fZLLulfl + sz;Luufu)

The solution can be obtained by
Vfu-Q(f) = 2Ly f1 + 2L, f, = 0
=l /. = letlt(_l'ulfl) = La&(wulfl)

J. Y. Choi. SNU
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SSL with Graphs: Harmonic Functions

Relation between closed form solution and random work

fu= LWy f), P=D"'W
Note that
P=D"'W-L=D-W=D(U-D'W)=D(0-P)
This yields
fu=A=Py) ' Dy (Dyy Py f1) = (1 =Py) " Pyif
Fori € U,

fi=( _Puu)i_ulpulfl . .
= Zj:yj=1(l _Puu)i_u Pu] o Zj:yj=—1(l _Puu)i_u Pu]

+1 ~1
= p ) —pi

J. Y. Choi. SNU
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SSL with Graphs: Regularized Harmonic Functions

Fori € U,

fi= pl-(ﬂ) — pi(_l) = f;=| fi|lsgn( f;) = confidence X label

What happens if an outlier sneaks in?
—> The prediction for the outlier can mislead the confidence

How to control the confidence of the inference?
— Allow the random walk to diel!
— We add a sink to the graph, where
sink = artificial node with label O.
We connect the sink to every other vertex.

What will the sink do in the predictions?

J. Y. Choi. SNU
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SSL with Graphs: Regularized Harmonic Functions

Regularized Harmonic solution on the graph with sink

-Lll + Vg Inl
Lul

i _)/g 11)(7’1,1

We can disregard the last

Ly

Ve 2(f) =0,

Llu —Yg 1nl><1 -

Luu + Vg Inu Vg 1nu><1

_yg11><nu (nl T nu)yg_

column and row:

+ ¥gln, L1 [f z]
Lul Luu + Vg Inu fu

= Lulfl + (Luu + Vglnu)fu
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+ Vg I)_l (Wulfl);

(Luu

How do we compute this regularized random walk?
fu

SSL with Graphs: Regularized Harmonic Functions
How does v, Influence the solution?
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What happens to sneaky outliers?
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with @ = L+ y,I :
Define f; = f(x;), f £ [fis ) fuy4ny,]

ni

min ©o (fi —y)* +Af1Qf

fER™MFMu i=1

Soft constraints for f(x;) = y;, Vi € L: o is replaced by finite values

min (f —y)'C(f —y) +f'Qf

feRnl+Tlu

C, for labeled examples

C is diagonal with C;; = {Cu for unlabeled examples

IR E : true label for labeled examples
y indicates pseudo-targets with y; =

0 for unlabeled examples

J. Y. Choi. SNU
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SSL with Graphs: Soft Harmonic Functions

Closed form Soft Harmonic solution:
fr= feﬁl%iflnu[(f -y'Cf-y+fefl->f =C'Q+D7y
X v, = 1.000 7, = 0.200 v, = 0.040

1
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\What are the differences between hard and soft?
Not much different in practice.

Noisy labels may be smoothed by soft harmonic.
Generalization i1s improved by the sink node
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Summary questions on the lecture

= What does hinge loss in SVM penalize?

» What does hat loss in SVM for semi-supervised learning penalize?

» Why can’t we use eigenvectors to solve MinCut-based SSL in graph?

* What is the meaning of harmonic function in SSL?

= What is random work interpretation of harmonic function-based SSL in graph?
= What is a key point of regularized harmonic function-based SSL in graph?

= What is a key point of soft harmonic function-based SSL in graph?
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