Optimization
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min RCut(A, B =minz ol
4B S22 AB Lujcpajep (|A| |B|)

Relaxation P iren
Define graph function f for cluster membership of RatioCut: £ ={ ":I
1 —Ji if v, EB
fTLF =5 ) wy (fi— f?= (4] + [BDRCut (4, B)
i

Since (4| + |B]) is constant, mln RCut(A,B) = mln fTLf,
— = 4] = |B]

subjectto f; € {\/; —\/;}

| B |A|

||f||2 = Zifiz = |A|— IA| + |B|— IB| =|A] +[B| =N Still NP hard...Require relaxation.

Al=1Bl > ) fi=0 o f L1y
L

Optimization formulation for (same with balanced

mfinfTLf subjectto f,.€ R, f L1y, |fll=+VN

1 1
TLf #+ (|A| + |B Z w--(—+—) * |A| = |B|
f f (l | | D iEA,jEB l |A| |B|
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Questions of the last lecture

= What does hinge loss in SVM penalize?
— Hinge loss penalizes the case that the classifier f(w, x) does not decide the
correct class of labeled x with the score margin of y f(w, x)>=1.

-

0

5 -4 -3 -2-1 0 1 2 3 4 5
yf(x)
hinge loss

cb(xi' Yir f(W,b; xi)) = max(l _yi(wai £ b)r O)
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Questions of the last lecture

» What does hat loss in SVM for semi-supervised learning penalize?
— Hat loss penalizes the case that the classifier f(w, x) does not decide any
class of unlabeled x with the score margin of |f(w, x)|>=1.
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f(x)
(b) the hat loss
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Questions of the last lecture

= Why can’t we use eigenvectors to solve MinCut-based SSL in graph?
— It Is because the eigenvector solution can not consider the labeled data.

Transductive SSL with graph: fixing fori € L

min,,, 20wy (FG0 = 1)) e D (0 =)

fe(x1}tnu

Solution:
An integer program: NP hard
Can we use eigenvectors? No. Why?

We need a better way to reflect the confidence.

J. Y. Choi. SNU



Questions of the last lecture

* What is the meaning of harmonic function in SSL?
— The harmonic function makes the label of a node to be harmonious(similar)
with those of its neighboring nodes.

Relaxation: Transductive SSL with graph: fixing f(x;) fori € L

min,, Ay (£ = ()" +o0 ) () = 3

feRnﬁnu

Naive Solution
Right term solution: constrain f to match the supervised data
f(xi) =Y Vie {1, ...,nl}
Left term solution: enforce the solution f to be harmonic (cf. aggregation, rw)
Zijf(xj)wij .
X;) = Vie +1,..,n+ — y-17_ —7-1
f(xi) Zij Wij Lem Mty fu = Luu( Lulfl) = Luu(wulfl)

J. Y. Choi. SNU 5



Questions of the last lecture

» What is random work interpretation of harmonic function-based SSL in graph?
— The label of a node is assigned by the average of the harmonic labels of the

vertices that are hit by random works.

ij W.. 1 SO ; l T
‘ ) = +1 volt DRI
a® TN b 4 R
( ( £ ““ O 0 / Y)“‘ O 0
«\ 1‘—' - “ .‘\ ‘7» Y |
NN OO0~ SN /rfi,f/ji
(a) The electric network interpretation (b) The random walk interpretation

Random walk interpretation :
1) start from the vertex you want to label and randomly walk

S\ Wij . -
2) P(I) =5~ = P=D"W
3) finish when a labeled vertex is hit )= Zifzf(zf;)wif
i

4) f(x;)Iis assigned by average of the labels of the hit vertices.
J. Y. Choi. SNU



Questions of the last lecture

= What is a key point of regularized harmonic function-based SSL in graph?
— A sink node is added to allow the random work to die at any nodes, which
reduces the misleading by outliers.

fu= Lyy + Vgl)_l(Wulfl):

How does vy, influence the solution?

X, y =1.000
'59T9v009'0v99 L AR AR AR
L T I I T SN S S D T T T S T S S S
R R S R R S S S B Y 1 1
LI T T TR T TN TR T T LI T TR TN TR TR TN T Y 3
N S R E RTINS SRR RS 0l. 0l.
x L R TR T T S A R R LI S S R S S T R
R SRS S S S B I B A B e e e ) -1 -1
L TR T T SR S S S L T T ST S S S S
R R S R T R R R I R SR IR R R T S -5 -5
R R T R e
-10 5 0 5 10
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Questions of the last lecture

= What is a key point of soft harmonic function-based SSL in graph?
— The labeled data is not constrained strictly, where noisy labels may be
smoothed by the soft harmonic function

Regularized HS objective with @ = L + y,I :
Define fl = f(xi); f = [fi! ""fnl+nu]

ny

min o (fi—yd? +Af"Qf

fE]Rnl+nu i=1

Soft constraints for f(x;) = y;, Vi € L: oo is replaced by finite values

min (f -y)'C(f -y) +f'Qf

feRnl+nu

J. Y. Choi. SNU



Outline of Lecture (1)

Graph Spectral Theory

. Definition of Graph

. Graph Laplacian

. Laplacian Smoothing

Graph Node Clustering

. Minimum Graph Cut

. Ratio Graph Cut

. Normalized Graph Cut

Manifold Learning

=  Spectral Analysis in Riemannian Manifolds
=  Dimension Reduction, Node Embedding
Semi-supervised Learning (SSL)

. Self-Training Methods

=  SSL with SVM

. SSL with Graph using MinCut

. SSL with Graph using Harmonic Functions

J. Y. Choi. SNU

Semi-supervised Learning (SSL) : conti.

. SSL with Graph using Regularized Harmonic
Functions

. SSL with Graph using Soft Harmonic
Functions

. SSL with Graph using Manifold
Regularization (out of sample extension)

. SSL with Graph using Laplacian SVMs

. SSL with Graph using Max-Margin Graph
Cuts

o Online SSL

. SSL for large graph

Graph Convolution Networks (GCN)
. Graph Filtering in GCN

. Graph Pooling in GCN

. Spectral Filtering in GCN

=  Spatial Filtering in GCN
Recent GCN papers




SSL with Graphs: Out of sample extension

Both MinCut and HF only inferred the labels on unlabeled data.
They are transductive.

What if a new point x,, 4, 41 arrives?

Option 1) Add it to the graph and recompute HF Solution. (Still Transductive)
Option 2) Make the algorithms inductive!

Define a classifier; [ : X — R
Make f(x;) be smooth. Why? To deal with noise by providing reasonable
Interpolation for new samples.

Solution: Manifold Regularization

J. Y. Choi. SNU
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SSL with Graphs: Manifold Reqgularization

General (S)SL objective:
min lq)(xi,yi,f(xi))) +200F), f £ [... f(xp) ... ]

feH i

Want to control f , also for the out-of-sample data, I.e.,
everywhere(generalization).

AQ(f) = LfLf + 14| 115
17 =< VE,VF >1200x0= ff(x) Af (x)dx

For general kernels: SToothness for given samples
ni
min (b(xi;yi,f(xi))) +Al”f”§{‘ +AZfTLI
Smoothness for unknown samples

J. Y. Choi. SNU 11



SSL with Graphs: Manifold Reqgularization

General (S)SL objective with kernels:

ni
min > Dy, f(x)) + Allf 17 + A Lf
fEH 3 b

Representer theorem for manifold reqgularization

The minimizer f* has a finite expansion of the form

Fe=y e 1)

=1

LapRLS: Laplacian Regularized Least Squares

o(x,y,f(0) = (v — f(2))?
LapSVM: Laplacian Support Vector Machines

®(x,y, f(x)) = max(0,1 — yf (x))

J. Y. Choi. SNU
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SSL with Graphs: Laplacian SVMs

General (S)SL objective with kernels:

max(0,1 — v, f(x;)) + 4|/ 1|5 + A, fTLf

RBF kernels

np
min
JEH 3¢ lemd
SVM

J. Y. Choi. SNU

0 1 2
¥, = 0.03125 y =0

Laplacian SVM

fﬂj % n?“ ﬂ%nnﬂ
(=]
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¥, = 0.03125 y = 0.01

Laplacian SVM
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¥, = 0.03125 y = 1
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SSL with Graphs: Laplacian SVMs

Formulation for Transductive SVM
ny
minz_ max(1 — y;(wTx; + b), 0) + A, ||w]|?

=1
+1, Zi=nl+1 max(1 — |w'x; + b|,0)
SVM Transductive SVM Laplacian SVM

2.5 2.5 2.5

2 2 2

1.5 1.5 1 1.5

g o R AR 1 o s

0.5 ¥ # % Bag 0.5 ¥ $. 5= oo 0.5 L #s o Pon

0:?” iﬁun'a}'? 0:?“ %ﬁﬂn'ﬁ}gﬁ ou?n i“uuaﬁ
~0.5 3 LEH | o5 ; mﬁﬂn -0.5 d e
-1 -1 -1
-1.5— . . . -1.5— . . . -1.5

-1 0 1 2 -1 0 1 2 -1 0 1 2
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SSL with Graphs: Max-Margin Graph Cuts

Self-training with the confident data

fr= argminz ®(xy, sgn(£y), £ (x)) + Allfll%
fEH 5 i:|4;|ze

s.t. ¢ =argmint¢" (L+y,l) ¢
LeRN
S. L. 'Bi=yi' Vi=1,...,7’ll

Representer theorem is still cool:
fr(x) = E a; K (x, x;)
i:|€?|28

J. Y. Choi. SNU
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SSL with Graphs: LapSVMs and MM Graph Cuts

n

Join max(0,1 — yif (X)) + Aall fII7 + Af"Lf Ap =01, e =0.01
K b

MMGC and MR for 2D data and RBF K

RBF GC

RBF MR

Manifold regularization of SVMs (MR), max-margin graph cuts (GC)

J. Y. Choi. SNU MM Graph Cuts, JMLR, 2010
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proceedings.mlr.press/v9/kveton10a/kveton10a.pdf

OnlineSSL(G)

when we can’t access future x

(N NN NN s nnnnisnnnnnn
e, By 5

CEXE LI SChe B £ )e
RN SR

2
g 7 ! &
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Online SSL with Graphs

learning setup

Given {x;}\.; from R% and {y;},, with n < N, find {y;}i_,,., (transductive)
or find f predicting {y;|y; = f(x;),i =n+1,...,N} well beyond that (inductive).

learning setup

At the beginning, given {x;, y;}*, from R<.

At time t:
- Revisit : out of sample expansion
rece|_ve Xt Option 1) Add it to the graph and recompute HF Solution.
pI‘EdIC'[ Yt Option 2) Make the algorithms inductive! (not learn x;)

J. Y. Choi. SNU 18



Online SSL with Graphs

Online HFS: Straightforward solution (option 1)

: while new unlabeled example x; comes do
. Add x; to the graph ¢ (W)

. Update L,

. Infer labels

B~ WDN Bk

fu=Luu + v, D" Wuif)
: Predict 9, = sgn(fy.)
- end while

o O1

What is wrong with this solution?

The cost and memory of the operations.
What can we do?

J. Y. Choi. SNU
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Online SSL with Graphs: Graph Quantization
Let’'s keep only k vertices!

Limit memory to k centroids with W4, where W?j contains the similarity between

the i-th and j-th centroids.
Each centroid represents several others.

Let V be a diagonal matrix of which
V;; denotes number of points collapsed into the i-th centroid.

Can we compute it compactly? Compact harmonic solution.
fi=Uiy +y, V(WL f) where W =vVWav

Proof and Algorithm: see http://www.bkveton.com/docs/uai2010a.pdf

J. Y. Choi. SNU 20
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Online SSL with Graphs

Online HFS with Graph Quantization

01: Input

02: k number of representative nodes

03: Initialization

04: IV matrix of multiplicities with 1 on diagonal
05: while new unlabeled example x; comes do
06: Add x; to graph ¢

07: if # nodes > k then

08: guantize G

09: endif

10: Update L; of G(VWYV)

11: Infer labels

12:  Predict y; = sgn(f,(t))

13: end while

J. Y. Choi. SNU



Online SSL with Graphs: Graph Quantization

Incremental quantize G
An idea: incremental k-centers
Doubling algorithm of Charikar et al. [Cha+97]
Keeps up to k centers C; = {c{,cy,...} With
= Distance ¢;,¢j e C; Is atleast = R
= For each new x;, distance to some c;e C; Is less than R.
" |G <k

* |f not possible, R is doubled

J. Y. Choi. SNU
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Online SSL with Graphs: Graph Quantization

J. Y. Choi. SNU



Online SSL with Graphs: Graph Quantization

Sumeet

J. Y. Choi. SNU

Sumeet
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Online SSL with Graphs: Graph Quantization

J. Y. Choi. SNU
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Online SSL with Graphs: Graph Quantization

Sumeet

J. Y. Choi. SNU
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Online SSL with Graphs: Some experimental results

http://www.bkveton.com/videos/Ad.mp4

Labeled Unlabeled Unlabeled Unlabeled
Dataset VO Dataset VO
100 $ (\’,
. . 99} %
S S
5 5§ 98}
n k 0
i —O— NN classifier 8 o7l
a OSSB (all) k o —O— NN classifier
o ] e OSSB (half) 4 i 96 | | —XF=— Commercial solution
= Online HFS % Q= Online HFS
80 - : : : —— 95 - : — - - :
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Recall [%] Recall [%]
Online HFS outperforms OSSB (even when the Online HFS yields better results than a commercial solution at
weak learners are chosen using future data) 20% of the computational cost

J. Y. Choi. SNU



Summary Questions of the Lecture

What are the two options for out of sample extension in SSL?

Why do we have to make a classifier be smooth in inductive SSL for out of
sample extension?

What is the meaning of manifold regularization?

What is the key idea of Max-Margin Graph Cuts for SSL?

What are the two options for online SSL?

What is the key idea for keeping # of representative nodes?

J. Y. Choi. SNU
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