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 What does hinge loss in SVM penalize?

→Hinge loss penalizes the case that the classifier f(w, x) does not decide the 

correct class of labeled x with the score margin of y f(w, x)>=1. 
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 What does hat loss in SVM for semi-supervised learning penalize?

→Hat loss penalizes the case that the classifier f(w, x) does not decide any  

class of unlabeled x with the score margin of |f(w, x)|>=1. 
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 Why can’t we use eigenvectors to solve MinCut-based SSL in graph? 

→ It is because the eigenvector solution can not consider the labeled data.
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 What is the meaning of harmonic function in SSL?

→The harmonic function makes the label of a node to be harmonious(similar) 

with those of its neighboring nodes.
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 What is random work interpretation of harmonic function-based SSL in graph?

→The label of a node is assigned by the average of the harmonic labels of  the 

vertices that are hit by random works.  
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 What is a key point of regularized harmonic function-based SSL in graph?

→A sink node is added to allow the random work to die at any nodes, which 

reduces the misleading by outliers. 
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 What is a key point of soft harmonic function-based SSL in graph? 

→The labeled data is not constrained strictly, where noisy labels may be 

smoothed by the soft harmonic function
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Outline of Lecture (1)

 Graph Spectral Theory

 Definition of Graph

 Graph Laplacian

 Laplacian Smoothing

 Graph Node Clustering

 Minimum Graph Cut

 Ratio Graph Cut

 Normalized Graph Cut

 Manifold Learning

 Spectral Analysis in Riemannian Manifolds 

 Dimension Reduction, Node Embedding

 Semi-supervised Learning (SSL) 

 Self-Training Methods

 SSL with SVM

 SSL with Graph using MinCut

 SSL with Graph using Harmonic Functions 
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 Semi-supervised Learning (SSL) : conti.

 SSL with Graph using Regularized Harmonic 
Functions 

 SSL with Graph using Soft Harmonic 
Functions 

 SSL with Graph using Manifold
Regularization (out of sample extension)

 SSL with Graph using Laplacian SVMs

 SSL with Graph using Max-Margin Graph 
Cuts

 Online SSL 

 SSL for large graph 

 Graph Convolution Networks (GCN)

 Graph Filtering in GCN

 Graph Pooling in GCN

 Spectral Filtering in GCN

 Spatial Filtering  in GCN

 Recent GCN papers
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Both MinCut and HF only inferred the labels on unlabeled data.

They are transductive.

What if a new point 𝑥𝑛𝑙+𝑛𝑢+1 arrives? (called out of sample extension)

Option 1) Add it to the graph and recompute HF Solution. (Still Transductive)

Option 2) Make the algorithms inductive!

Define a classifier; 𝑓 ∶ 𝒳 → ℝ
Make 𝑓(𝒙𝑖) be smooth. Why? To deal with noise by providing reasonable 

interpolation for new samples.

Solution: Manifold Regularization
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General (S)SL objective:

min
𝑓∈ℋ


𝑖

𝑛𝑙
Φ(𝒙𝑖 , 𝑦𝑖 , 𝑓 𝑥𝑖 )) + 𝜆Ω(𝒇) , 𝒇 ≜ […𝑓 𝑥𝑖 …]

Want to control 𝑓 , also for the out-of-sample data, i.e., 

everywhere(generalization).

𝜆Ω 𝒇 = 𝜆2𝒇
𝑇𝑳𝒇 + 𝜆1 𝑓 𝒦

2

𝑓 𝒦
2 =< 𝛻𝑓, 𝛻𝑓 >𝐿2(𝑇𝓧)= න𝑓(𝒙) ∆𝑓 𝒙 𝑑𝒙

For general kernels:

min
𝑓∈ℋ𝒦


𝑖

𝑛𝑙
Φ(𝒙𝑖 , 𝑦𝑖 , 𝑓 𝑥𝑖 )) + 𝜆1 𝑓 𝒦

2 + 𝜆2𝒇
𝑇𝑳𝒇

Smoothness for given samples

Smoothness for unknown samples
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General (S)SL objective with kernels:

min
𝑓∈ℋ𝒦


𝑖

𝑛𝑙
Φ(𝒙𝑖 , 𝑦𝑖 , 𝑓 𝑥𝑖 )) + 𝜆1 𝑓 𝒦

2 + 𝜆2𝒇
𝑇𝑳𝒇

Representer theorem for manifold regularization

The minimizer 𝑓∗ has a finite expansion of the form

𝑓∗ 𝒙 =
𝑖=1

𝑛𝑙+𝑛𝑢
𝛼𝑖
∗𝒦(𝒙, 𝒙𝑖)

LapRLS: Laplacian Regularized Least Squares

Φ 𝒙, 𝑦, 𝑓 𝒙 = (𝑦 − 𝑓 𝒙 )2

LapSVM: Laplacian Support Vector Machines

Φ 𝒙, 𝑦, 𝑓 𝒙 = max(0, 1 − 𝑦𝑓 𝒙 )
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General (S)SL objective with kernels:

min
𝑓∈ℋ𝒦


𝑖

𝑛𝑙
max(0, 1 − 𝑦𝑖𝑓 𝑥𝑖 ) + 𝜆𝐴 𝑓 𝒦

2 + 𝜆𝑙𝒇
𝑇𝑳𝒇

RBF kernels
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Formulation for Transductive SVM (Revisit)

min
𝒘,𝑏


𝑖=1

𝑛𝑙
max(1 −𝑦𝑖 𝒘

𝑇𝒙𝑖 + 𝑏 , 0) + 𝜆1 𝒘 2

+𝜆2σ𝑖=𝑛𝑙+1
𝑛𝑙+𝑛𝑢 max(1 − 𝒘𝑇𝒙𝑖 + 𝑏 , 0)
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Self-training with  the confident data

𝑓∗ = 𝑎𝑟𝑔min
𝑓∈ℋ𝒦


𝑖: ℓ𝑖

∗ ≥𝜀
Φ(𝒙𝑖 , 𝑠𝑔𝑛 ℓ𝑖

∗ , 𝑓(𝒙𝑖)) + 𝜆 𝑓 𝒦
2

s. t. ℓ∗ = 𝑎𝑟𝑔min
ℓ∈ℝ𝑁

ℓ𝑇 (𝑳 + 𝛾𝑔𝐈) ℓ

s. t.      ℓ𝑖 = 𝑦𝑖 , ∀ 𝑖 = 1,… , 𝑛𝑙

Representer theorem is still cool:

𝑓∗ 𝒙 =
𝑖: ℓ𝑖

∗ ≥𝜀
𝛼𝑖
∗𝒦(𝒙, 𝒙𝑖)
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SSL with Graphs:  LapSVMs and MM Graph Cuts
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Manifold regularization of SVMs (MR), max-margin graph cuts (GC)

min
𝑓∈ℋ𝒦


𝑖

𝑛𝑙
max(0, 1 − 𝑦𝑖𝑓 𝑥𝑖 ) + 𝜆𝐴 𝑓 𝒦

2 + 𝜆𝑙𝒇
𝑇𝑳𝒇

𝜆𝑙 𝜆𝑙 𝜆𝑙 𝜆𝑙 𝜆𝑙

𝜆A = 0.1, 𝜖 = 0.01

MM Graph Cuts, JMLR, 2010

proceedings.mlr.press/v9/kveton10a/kveton10a.pdf
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when we can’t access future 𝒙
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OnlineSSL(𝒢)
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Offline learning setup

Given  {𝒙𝑖}𝑖=1
𝑁 from  ℝ𝑑 and {𝑦𝑖}𝑖=1

𝑛 , with  𝑛 ≪ 𝑁, find {𝑦𝑖}𝑖=𝑛+1
𝑁 (transductive)

or find 𝒇 predicting 𝑦𝑖 𝑦𝑖 = 𝒇 𝒙𝑖 , 𝑖 = 𝑛 + 1,… ,𝑁} well beyond that (inductive).

Online learning setup

At the beginning, given {𝒙𝑖 , 𝑦𝑖}𝑖=1
𝑛 from ℝ𝑑.

At time 𝑡:
receive 𝒙𝑡
predict  𝑦𝑡

Revisit : out of sample expansion

Option 1) Add it to the graph and recompute HF Solution.

Option 2) Make the algorithms inductive! (not learn 𝒙𝑡)
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Online HFS: Straightforward solution (option 1)

1: while new unlabeled example 𝒙𝑡 comes do

2: Add 𝒙𝑡 to the graph 𝐺(𝑾)
3: Update 𝑳𝑡
4: Infer labels

𝒇𝑢 = (𝑳𝑢𝑢 + 𝛾𝑔𝐈)
−1 𝑾𝑢𝑙𝒇𝑙

5: Predict  ො𝑦𝑡 = 𝑠𝑔𝑛(𝒇𝑢,𝑡)

6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?
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Let’s keep only 𝑘 vertices!

Limit memory to 𝑘 centroids with ෪𝑾𝑞 ,where ෪𝑾𝑖𝑗
𝑞

contains the similarity between 

the 𝑖-th and 𝑗-th centroids.

Each centroid represents several others.

Let 𝑽 be a diagonal matrix of which

𝑽𝑖𝑖 denotes number of points collapsed into the 𝑖-th centroid.

Can we compute it compactly? Compact harmonic solution.

𝒇𝑢
𝑞
= (𝑳𝑢𝑢

𝑞
+ 𝛾𝑔𝑽)

−1 𝑾𝑢𝑙
𝑞
𝒇𝑙 where  𝑾

𝑞
= 𝑽෪𝑾𝑞𝑽

Proof and Algorithm: see http://www.bkveton.com/docs/uai2010a.pdf

http://www.bkveton.com/docs/uai2010a.pdf
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Online HFS with Graph Quantization

01: Input

02: 𝑘 number of representative nodes

03: Initialization

04: 𝑉 matrix of multiplicities with 1 on diagonal

05: while new unlabeled example 𝒙𝑡 comes do

06: Add 𝒙𝑡 to graph 𝐺
07: if # nodes > 𝑘 then

08: quantize 𝐺
09: end if

10: Update 𝐿𝑡 of 𝐺(𝑽𝑾𝑽)
11: Infer labels

12: Predict ො𝑦𝑡 = 𝑠𝑔𝑛(𝑓𝑢(𝑡))
13: end while
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Incremental quantize 𝐺

An idea: incremental 𝑘-centers

Doubling algorithm of Charikar et al. [Cha+97]

Keeps up to 𝑘 centers 𝐶𝑡 = {𝑐1, 𝑐2, . . . } with

 Distance 𝑐𝑖 , 𝑐𝑗 𝜖 𝐶𝑡 is at least ≥ 𝑅

 For each new 𝒙𝑡, distance to some 𝑐𝑖𝜖 𝐶𝑡 is less than 𝑅.

 𝐶𝑡 ≤ 𝑘

 if not possible, 𝑅 is doubled



J. Y. Choi. SNU

Online SSL with Graphs: Graph Quantization

23



J. Y. Choi. SNU

Online SSL with Graphs: Graph Quantization

24



J. Y. Choi. SNU

Online SSL with Graphs: Graph Quantization

25



J. Y. Choi. SNU

Online SSL with Graphs: Graph Quantization

26



J. Y. Choi. SNU

Online SSL with Graphs: Some experimental results
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http://www.bkveton.com/videos/Ad.mp4
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What are the two options for out of sample extension in SSL?

Why do we have to make a classifier be smooth in inductive SSL for out of 

sample extension? 

What is the meaning of manifold regularization?

What is the key idea of Max-Margin Graph Cuts for SSL?

What are the two options for online SSL?

What is the key idea for keeping # of representative nodes? 


