

Ch. 8 Varied Flow in Open Channels 8-1 Concept of Non-uniform Flows

Contents

- 8.1 Specific Energy
- 8.2 Critical Flow
- 8.3 Hydraulic Jump

Class objectives

- Introduce basic concept of the steady non-uniform flows
- Apply the <u>work-energy equation</u> to the non-uniform open channel flow problems
- Derive equations of the <u>hydraulic jump</u>

Steady non uniform flow

- Steady non-uniform flow
 - The velocity, and depth are different at the different points
 - Important concepts are
 - Specific energy 비에너지
 - Specific force (or momentum) 비력
 - Rapidly varied flow 급변류
 - Gradually varied flow 점변류

8.1 Specific Energy

- The specific energy was first introduced by Bakhmeteff in 1912.
- The specific energy concepts permit determination of how water surface and velocity vary with change in flow cross-section.
- Specific energy (비에너지): total head <u>above the channel bottom (not</u>

<u>from datum</u>) = distance between the channel bottom and the energy line

1. Specific energy

For a <u>wide channel of rectangular cross section</u>, specific energy is given by the two-dimensional flow rate, q

(10.14)

Use diagram to solve Eq. (10.13)

- 1) Specific energy diagram: plot of *E* versus *y* with *q* constant
- With a given flowrate, *E* is increasing as depth decreases or increases

from the critical value, critical depth, y_c , in which E has the minimum value

2) q-curve: plot of q versus y with <u>E constant</u>

Critical depth

$$\frac{dE}{dy} = 0 \quad or \quad \frac{dq}{dy} = 0$$

$$\frac{dE}{dy} = 0: q = \sqrt{gy_c^3}, \quad y_c = \sqrt[3]{\frac{q^2}{g}} \quad (10.15)$$

$$\frac{dq}{dy} = 0: y_c = \frac{2}{3} E_{\min} \text{ or } E_{\min} = \frac{3y_c}{2} \quad (10.16)$$

- Eq. (10.15) shows that critical depth is dependent on flowrate only.
- Critical flow can be used as means of <u>flowrate measurement</u>.

 \rightarrow critical-depth meters (broad-crested weir)

Alternate depths

In both specific energy diagram and *q*-curve, there exist two different depths for a given specific energy or unit discharge

 \rightarrow Alternate depths: subcritical flow depth

대응수심 L supercritical flow depth

3. Use of specific energy

Consider two types of local changes in flow cross section

- Channel hump (step) or broad-crested weir
- Channel constriction

1) Channel hump (broad-crested weir)

Channel hump: The structure is sufficiently <u>smooth</u> and streamlined so that <u>no additional friction losses</u> are introduced.

 \rightarrow Energy line remains parallel to the channel bottom.

$$z_1 + \frac{p_1}{\gamma} + \frac{V_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + h_L$$

As flow moves from upstream channel over the hump, the distance from the channel bottom to the energy line, i.e. <u>specific energy</u>, <u>*E*</u>, <u>decreases</u> even though the total energy remains the same.

It appears that the <u>depth of flow will either increase or decrease</u> as flow moves onto the hump depending on <u>whether the upstream flow is</u> <u>supercritical or subcritical.</u> Seoul National University

1) Case I: upstream flow is subcritical

Work-energy eq. from channel bottom is

$$E_1 = y_1 + \frac{V_1^2}{2g} = \Delta z + y_2 + \frac{V_2^2}{2g}$$
$$E_1 = \Delta z + E_2 \text{(specific energy)}$$

- So the new specific energy is just the initial specific energy minus the step dimensions, $E_2 = E_1 \Delta z$
- \rightarrow the specific energy decreases, even though total energy unchanged.

If the upstream flow is subcritical, then the decrease in *E* will cause a decrease in depth of flow.

- \rightarrow This result in a <u>drop in water surface</u> over the hump
- \rightarrow The flow velocity and the velocity head must increase.

In terms of the total energy given by the Bernoulli equation, the depth at the step is given by

$$y_2 = E_1 - \left(\Delta z + \frac{V_2^2}{2g}\right) = E_1 - \left(\Delta z + \frac{Q^2}{2gA_2^2}\right)$$

For a rectangular channel section,

$$y_{2} = E_{1} - \left(\Delta z + \frac{V_{2}^{2}}{2g}\right) = E_{1} - \left(\Delta z + \frac{q^{2}}{2gy_{2}^{2}}\right)$$

- If the hump were made high enough $(\Delta z = E_1 E_{min})$, the <u>critical depth</u> would occur over the hump.
- ightarrow Broad-crested weir

- Further, if the hump were made even higher, the <u>flow would not have</u> <u>enough specific energy</u> to flow over the hump and the hump would <u>become a dam</u>. The depth at the hump will still remain the critical depth.
- \rightarrow Flow would <u>back up</u>, gaining enough elevation to flow over the hump at minimum energy and <u>critical depth</u>.

Broad-crested weirs

Broad-crested weirs:

$$0.08 < \frac{H}{L_w} < 0.5$$

For real weir flow the relation between flowrate and head is

$$q = \sqrt{gy_c^3} = \sqrt{g\left(\frac{2}{3}E_{\min}\right)^3} = \left(\frac{2}{3}\right)^{3/2}\sqrt{g}E^{3/2} = 0.577 \times \frac{2}{3}\sqrt{2g}E^{3/2}$$
(10.15)
$$q = C_w \frac{2}{3}\sqrt{2g}H^{3/2}$$
(14.23)

Combine (10.15) and (14.23)

$$C_w = \frac{1}{\sqrt{3}} \left(\frac{E}{H}\right)^{3/2}$$

$$C_{w} = f\left(\operatorname{Re}, \operatorname{We}, \frac{P}{H}\right)$$
$$E = \frac{3}{2}\left(E_{1} - \left(P + \frac{V_{c}^{2}}{2g}\right)\right)$$

2) Case II: upstream flow is supercritical

If the upstream flow is <u>supercritical</u>, the <u>decrease in *E* will cause a</u> <u>increase in depth</u> over the hump.

2) Channel constriction

 When contraction occurs, specific energy, <u>*E* is constant, but unit discharge (*q*)</u> <u>increases</u>.

$$q_c = \frac{Q}{B_c} > q_0 = \frac{Q}{B_0}$$

- If the upstream flow is <u>subcritical</u>, a <u>decrease in flow depth</u> occurs in the constriction.
- If the upstream flow is <u>supercritical</u>, a <u>depth increase</u> occurs in the constriction.

- If the channel constriction is made sufficiently narrow, the <u>critical depth</u> would occur in the constriction.
- \rightarrow Venturi flume, Parshall flume

If the constriction is narrowed further, the flow will be unable to pass ulletthrough with the specific energy available and the constriction becomes a <u>choke</u>. For <u>subcritical flow</u> upstream, flow will then <u>back</u> up much as occurred with the hump, creating an unconventional dam, until sufficient specific energy is built up to pass through the constriction at the critical depth. If the <u>supercritical flow</u> exists upstream, a hydraulic jump will form and the flow will back up, gaining enough elevation to flow through the constriction at minimum energy condition.

- 1. Critical velocity
- Critical velocity may be obtained from combining the two equations.

$$q = V_c y_c, \quad q = \sqrt{g y_c^3}$$
$$V_c = \sqrt{g y_c}$$
(a)

• This equation is similar to another equation of open channel flow. \rightarrow speed of propagation of a <u>small gravity wave</u> on the surface of a liquid of depth $y \rightarrow Ch$. 6 (pp. 200-203)

$$c = \sqrt{gy}$$

- In <u>supercritical flow</u>, V > V_c, <u>small</u> <u>gravity waves will not propagate</u> <u>upstream</u> but rather will be swept downstream.
- In <u>subcritical flow</u>, V < V_c, <u>small</u> <u>gravity waves will propagate</u> <u>upstream</u>.

- In subcritical flow, Fr < 1
- In <u>supercritical flow</u>, *Fr* > 1

$$Fr = \frac{V}{\sqrt{gy}}$$

[Example 1]

Water flows in a rectangular channel of width 5 ft. 1) When discharge is 50 ft³/s find the <u>critical depth and minimum specific energy</u>. 2) When depth of flow is 0.5 ft, find the <u>specific energy and the alternate depth</u>. 3) If discharge increases to 75 ft³/s, what is the critical depth?

1)
$$y_c = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{10^2}{32.2}} = 1.46 \, ft$$

 $E_{\min} = \frac{3}{2} \, y_c = 2.19 \, ft.$

2) At the dpeth of 0.5ft (supercritical flow)

[Example 2] A <u>uniform flow</u> of 100 ft³/s occurs in a rectangular channel of 5 ft width and <u>5 ft depth</u>. A <u>smooth rise</u> of 0.5 ft is formed in the channel bed. 1) Determine the depth of flow above step. 2) What is the height of the step that will produce a <u>critical flow</u>?

1) The initial energy available for flow,

$$E_1 = y + \frac{q^2}{2gy^2} = 5 + \frac{(20)^2}{2g(5)^2} = 5.25 ft$$

Applying the Bernoulli equation across the step and ignoring losses,

2) Required Δz to cause <u>critical depth at the step</u>: <u>Critical depth will occur</u> <u>at the step</u> when the available energy E_1 is equal to E_{min} .

$$E_1 = E_{\min} + \Delta z$$
, $5.25 = 3.48 + \Delta z$, $\Delta z = 1.77 \, ft$

- 2. Critical slope
 - If <u>uniform flow were to occur at critical depth</u>, the slope of the channel bottom would be called <u>the critical slope</u> S_c.
 - For a rectangular channel of great width,

 $R_h = y_c$

• S_c is obtained by equating the flowrate of (10.5) and (10.15)

IP 10.6 (p. 455)

For a flowrate of 500 cfs in a rectangular channel 40 ft wide, the water depth is 4 ft. 1) Is this flow subcritical or supercritical? 2) If n = 0.017, what is the <u>critical slope</u> of this channel for this flowrate? 3) What channel slope would be required to produce <u>uniform flow at a depth of 4 ft</u>?

1)
$$y_c = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{12.5^2}{32.2}} = 1.69 ft \leftarrow q = \frac{Q}{B} = \frac{50}{4} = 12.5$$

 $y = 4 ft > y_c \rightarrow \text{subcritical flow} \leftarrow \text{uniform flow ?}$

2) For wide rectangular channel, critical uniform flow (y = 1.69 ft) occurs at the slope

$$S_c = \frac{gn^2}{u^2 y_c^{1/3}} = \frac{32.2 \times (0.017)^2}{1.49^2 \times 1.69^2} = 0.0035$$

3) To compute uniform flow, use Manning Eq.

$$Q = \left(\frac{u}{n}\right) A R_h^{2/3} S_0^{1/2}$$
$$S_0^{1/2} = Q\left(\frac{n}{u}\right) \frac{1}{A R_h^{2/3}} = 500 \left(\frac{0.017}{1.49}\right) \frac{1}{(4 \times 40) \left(\frac{4 \times 40}{40 + 2 \times 4}\right)^{2/3}} = 0.01598$$

 $S_0 = 0.000255 < S_c \rightarrow \text{mild slope} \rightarrow \text{subcritcal unifrom flow}$

Critical slope

- For upstream channel, flow is <u>supercritical uniform flow</u>
- For downstream channel, flow is <u>subcritical uniform flow</u>

For given Q, adjust the channel slope to create the critical uniform flow

- 3. Critical depth in non-rectangular channels
 - For non-rectangular channels, specific energy equation is given as

$$E = y + \frac{1}{2g} \left(\frac{Q}{A}\right)^2 = y + \frac{1}{2g} \left(\frac{Q}{A(y)}\right)^2 = y + \frac{Q^2}{2g} A(y)^{-2}$$
(10.18)

The critical depth relationship can be found by

$$\frac{dE}{dy} = 0 \rightarrow 1 + \frac{Q^2}{2g} \left(-\frac{2}{A^3} \frac{dA}{dy} \right) = 0 \qquad (A) \qquad \rightarrow \frac{dA}{dy} = \frac{gA^3}{Q^2}$$

The critical flow can be defined by the Froude number as

$$Fr_c = \sqrt{\frac{Q^2b}{gA^3}} = \frac{V}{\sqrt{g(A/b)}} = 1$$

33

For non-rectangular channels, dA = bdy (B) Substituting this into (A) results in the critical depth relationship as $\frac{Q^2b}{gA^3} = 1$ (10.19) $\rightarrow Q = \sqrt{\frac{gA^3}{b}}$

(10.20)

 The <u>critical slope (for critical uniform flow)</u> can be derived by following the same procedure as for the wide rectangular channel

$$Q = \sqrt{\frac{gA^3}{b}} = \frac{u}{n} A R_h^{2/3} S_c^{1/2}$$

$$S_{c} = \frac{gn^{2}}{u^{2}} \left(\frac{A}{bR_{h}^{4/3}}\right)$$
(10.20)

A, b, and $R_{\underline{h}}$ are all functions of depth and dependent on the section shape. Critical slope is thus a function of section shape.

IP 10.7 (pp. 457-8)

A flow of 28 m³/s occurs in an earth-lined canal having a base width of 3 m, side slopes z = 2 and Manning *n*-value of 0.022. Calculate the critical depth and critical slope.

Solution

$$\frac{Q^{2}b}{gA^{3}} = 1 = \frac{(28)^{2} \times (3+4y_{c})}{9.81 \times (3y_{c}+2y_{c}^{2})^{3}}$$

$$y_{c} = 1.50 m$$
Trapezoidal $(b+ty)y$ $b+2yw, w = (1+t^{2})^{0.5} A/P$
 $b+2ty$ A/B
 $f=y_{t}$

 Area and hydraulic radius corresponding to the critical flow conditions are

$$A = 3y_{c} + 2y_{c}^{2} = 3 \times 1.50 + 2 \times 1.50^{2} = 9.0 m^{2}$$

$$R_{h} = \frac{A}{P} = \frac{9.0}{3 + 2\sqrt{5} \times 1.50} = 0.93 m$$

$$b = B + 2zy = 3 + 2 \times 2 \times 1.50 = 9.0 m$$

$$S_{c} = \frac{gn^{2}}{u^{2}} \left(\frac{A}{bR_{h}^{4/3}}\right)$$

$$= \frac{9.81 \times 0.022^{2}}{1^{2}} \left(\frac{9.0}{9.0 \times 0.93^{4/3}}\right) = 0.00523$$

4. Occurrence of critical depth

(1) Mild slope to steep slope channel

The critical depth can be expected in the situation where a long channel of mild slope is connected to a <u>long channel of steep channel.</u>

- Far up the former channel, <u>uniform subcritical flow</u> at normal depth, y₀₁, will occur, and far down the latter a <u>uniform supercritical flow</u> at a smaller normal depth, y₀₂, will occur.
- In a reach of varied flow, depth must pass through the critical.

(2) Steep slope to mild slope channel

- When a long channel of steep slope discharges into to a long channel of mild channel, normal depth will occur upstream and downstream from the point of slope change.
- However, critical depth will not be found near this point.
- The <u>hydraulic jump will form</u> whose location will be dictated by the details of slopes, roughness, channel shapes, and so forth.
- The <u>critical depth will be found within the hydraulic jump</u>.

(3) Free outfall

- A long channel of mild slope is concluded to the brink
- The critical depth occurs a <u>short distance (3~4 y_c) upstream</u> from the brink
- The brink depth (y_b) is 71.5% of the critical depth (Rouse, 1970)

1. Hydraulic jump

Hydraulic jump occurs, when the flow moves from the depth lower than critical depth (y_1) to the depth which is deeper than critical depth (y_2) . That is, flow change from super-critical to sub critical

When channel is wide rectangular, there are two <u>conjugate depths</u> (공액수심) exist, and from this conjugate set of depths we can estimate the height of the jump.

Ignore the friction (short distance), then momentum equation becomes.

2. Specific force

 From (A), the specific force (비력) is defined as a function of depth

 \rightarrow *M*-curve

$$M = \frac{q^2}{gy} + \frac{y^2}{2}$$
$$\frac{dM}{dy} = 0 \rightarrow \frac{q^2}{gy_c^3} = 1$$

- A set of <u>conjugate depths</u> (공액수심) exists.
- Conjugate depth can be found by passing a vertical line since a vertical line is a line of constant *M*.
- The hydraulic jump can take place only across the critical depth.

3. Conjugate and alternative depths

- Conjugate depth (공액수심): same pressure and momentum relation.
- Alternate depth(대응수심): same specific energy
- Left figure is specific force, right figure is specific energy
- From the left hand side, find conjugate depth and then plug into the right hand side, then we can figure out <u>how much</u> <u>energy is changed</u>

- 4. Energy loss by hydraulic jump
- Because of eddies (rollers), air entrainment, and flow decelerations in the hydraulic jump, <u>large head losses</u> are to be expected. In the horizontal channel, the loss of energy is given as

$$\Delta E = \left(y_1 + \frac{V_1^2}{2g}\right) - \left(y_2 + \frac{V_2^2}{2g}\right)$$

 When the channel is very wide or rectangular, the unit discharge expression is (q / y),

$$\Delta E = (y_1 - y_2) + \frac{q^2}{2g} \left(\frac{1}{y_1^2} - \frac{1}{y_2^2} \right)$$

$$\Delta E = (y_1 - y_2) + \frac{q^2}{2g} \left(\frac{1}{y_1^2} - \frac{1}{y_2^2} \right)$$

$$= (y_1 - y_2) + \frac{y_1 y_2 (y_1 + y_2)}{4} \left(\frac{y_2^2 - y_1^2}{y_1^2 y_2^2} \right)$$

$$= (y_1 - y_2) + \frac{(y_1 + y_2)}{4} \left(\frac{y_2^2 - y_1^2}{y_1^2 y_2^2} \right)$$

$$= (y_2 - y_1) \left[-1 + \frac{(y_1 + y_2)^2}{4y_1 y_2} \right]$$

$$= (y_2 - y_1) \left[\frac{y_2^2 - 2y_1 y_2 + y_1^2}{4y_1 y_2} \right]$$

$$\Delta E = \frac{(y_2 - y_1)^3}{4y_1 y_2}$$

5. Classification of Hydraulic jump

1-5

<u>Undular jump</u> (1<*F_{r1}*<1.7; 파상도수): A smooth standing wave is formed at the water surface. Transition from the supercritical to the subcritical.

<u>Weak jump (</u>1.7<*F_{r1}*<2.5; 약도수): Small eddies and rollers are formed. Small loss of energy

(c)

<u>Oscillating jump</u> (2.5<*F*_{r1}<4.5; 진동도수): <u>Jet driven wave</u> occurs from bottom to top. Destruction begins

<u>Stable jump (</u>4.5<*F_{r1}*<9; 정상도수): Fixed position. Good <u>dissipation energy</u>

(d)

<u>Strong jump (</u>9<*F_{n1}*; 강도수): <u>Strong</u> <u>waves</u> are generator

Half-circle dam

Broad-crested weir

Trapezoidal dam

