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Abstract

« Simple, elegant solution to translate between multiple
languages.

 Introduces an artificial token at the beginning of the input
sentence to specify the required target language.
* The rest of the model is shared across all languages.

e Single multilingual model surpasses state-of-the-art results on
WMT'14 and WMT'15 benchmarks.

 Transfer learning and zero-shot translation is possible.

Johnson, Melvin, et al. "Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot
Translation." arXiv preprint arXiv:1611.04558(2016).



Key Features

« Simplicity
* The model is same for all languages.
* Any new data is simply added.

» Low-resource language improvements
 All parameters are implicitly shared by all the language pairs.
 This forces the model to generalize across language boundaries
during training.
« Zero-shot translation

« The model implicitly learns to translate between language pairs it
has never seen.

 ex) Train Portuguese—English and English—Spanish
« Then it can generate Portuguese—Spanish. ©



Evolution of Neural Translation Machine

e We'll start with a traditional encoder decoder machine
translation model and keep evolving it until it matches GNMT

http://smerity.com/articles/2016/google_nmt_arch.html



V1: Encoder-decoder

* The encoder spits out a hidden state.

 This hidden state is then supplied to the decoder, which
generates the sentence in language B

Er liebte zu essen .
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He loved to eat



V2. Attention based encoder-decoder

* The encoder query each output asking how relevant they are
to the current computation on the decoder side
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He loved to eat .




V3. Bi-directional encoder layer

e We would like the annotation of each word to summarize not
only the preceding words, but also the following words
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He loved to eat .



V4. "The deep Is for deep learning”
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He loved to eat .



V6: Residuals are the new hotness

* One solution for vanishing
gradients is residual networks.

* The idea of a layer computing
an identity function
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Visualization

* A t-SNE projection of the embedding of 74 semantically

identical sentences translated across all 6 possible directions
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Source Language Code-Switching

* Mixing Japanese and Korean in the source produces in many
cases correct English translations

e Japanese: I 7 KFN 4T3, — Iam a student at Tokyo University.
e Korean: U+ =3 t]se] &8y}, — I am a student at Tokyo University.

e Mixed Japanese/Korean: FldE i kzstAl ucl. — I am a student of Tokyo University.



Weighted Target Language Selection

* We test what happens when we mix target languages.

Japanese/Korean: I must be getting somewhere near the centre of the earth.
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Big Picture
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