Learning and Inference in Cartoon Videos using Deep Hypernetworks Concept Structure

2016-11-01

Introduction to Machine Learning

Byoung-Tak Zhang, Kyung-Min Kim

Definition – What is Concept?

Visual and linguistic representation

Sparse Population Coding model¹ (SPC)

1. Zhang B.-T., Ha J.-W., Kang M., Sparse Population Code Models of Word Learning in Concept Drift, *Cogsci* 2012

Deep Concept Hierarchies

(a) Example of deep concept hierarchy learned from Pororo videos (b) Hypergraph representation of (a)

Algorithm: Learning of Concept Layers

- Three issues
 - Determining the number of the nodes of the concrete concept layer c¹ (c¹-nodes)
 - Associating c¹-nodes and the modality layer h
 - Associating c¹-nodes and the abstract concept nodes (c²-nodes)
- Number of c¹-nodes and association of the c¹ layer and h
 - A c¹-node is associated with a subgraph of the hypernetwork
 - A subgraph = a cluster of hyperedges
 - The number of clusters changes depending on the closeness centrality using word2vec: (Mikolov et al. 2013)

 $Sim(\mathbf{h}^{m}) = \frac{Dist(\mathbf{h}^{m})}{|\mathbf{h}^{m}|} (\mathbf{h}^{m}: \text{the hyperedge cluster associated with } c_{m}^{1})$

- If $Sim(\mathbf{h}^m) > \theta_{max}$ or $Sim(\mathbf{h}^m) < \theta_{min}$ then \mathbf{h}^m is split or merged.
- Association of c¹ and c² layers
 - A hyperedge contains the c2 node information

$$\omega(\mathbf{c}_i^1, \mathbf{c}_j^2) = \frac{\sum_{h_m \in \mathbf{h}^i} \alpha_m C(\mathbf{c}_j^2, h_m)}{\sum_{h_m \in \mathbf{h}^i} \alpha_m}$$

Why Cartoon Videos?

Children's cartoon videos

- Multimodal
- Vision + language
- Simple grammars
- Explicit story lines
- Image processing
- Pseudo-real
- Educational
- Cognitive

Comparison to Previous Approaches

- Previous approaches to knowledge acquisition and representation
 - Semantic networks (Steyvers 2006)
 - WordNet (Fellbaum 2010)
 - Single-modality (usually linguistic)
- Here: Automated construction of conceptual knowledge from videos
 - Visually-grounded knowledge
 - Dynamic
 - Concept drift
 - Multimodal

Data Description (1/2)

Cartoon video data

 17 'Pororo' DVDs, 183 episodes, 1232 minutes, 16000 scenesubtitle pairs

• Image

- R-CNN for extracting image patches
- CNN feature vector (4096-D vector)
- Color histogram (1000-D vector)

Text

- Word set including functional words for sentence generation
- Total 3452 words
- Represent each word as a real vector by word2vec¹

Data Description (2/2)

- Image preprocessing: segmentation + descriptor
 - Each scene image → a set of image patches (MSER)
 - Image patch \rightarrow CNN feature / RGB histogram

• Text preprocessing: real vectors by word2vec

Concept Learning

Video Source

Concept Map

Data Pipeline

Unit of input : an episode

i-th episode

Evolution of Concept Map

Image Generation from Sentence

• Intermediate images generated from query sentences

Query sentences	Episodes 1~52 (1 season)	Episodes 1~104 (2 seasons)	Episodes 1~183 (all seasons)
 Tongtong, please change this book using magic. Kurikuri, Kurikuri- tongtong! 			
 I like cookies. It looks delicious Thank you, loopy 			

Image Generation from Sentence

Image Generation from Sentence

Sentence Generation from Image

Query = {i, try} Original subscript: clock, I have made another potion come and try it Generated subscripts

- as i don't have the right magic potion come and try it was nice
- ah, finished i finally made another potion come and try it we'll all alone?

Query = {he, take}

Original: Tong. Tong Let. Me. Take. It. To. Clock Generated

- take your magic to know what is he doing?
- take your magic to avoid the house to know what is he keeps going in circles like this will turn you back to normal

Query = {thanks, drink}

Original subscript: Oh, thanks Make him drink this **Generated subscripts**

- oh, thanks make him drink this bread
- oh, thanks make him drink this forest

Query = {ship, pulled}

Original: The ship is being pulled **Generated**

- wow looks as if that's the ship is being pulled
- the ship is being pulled

Sentence Generation from Image

Analysis of Constructed Concept Structures

• Distinguishable concept nodes

Additional Experiment 1

Proposing 3 different graph search methods

Graph Monte-Carlo Method

- Learning strategy: The probability of selecting a vertex, P(v(x)), for generating hyperedges
- Uniform graph MC (UGMC)

• Same probability for all vertices $P(v(x)) = \frac{1}{\left| \{x \mid x \in \mathbf{x}_{+}^{(n)}\} \right|} \quad (\mathbf{x}_{+}^{(n)}: \text{the set of variables with the positive value of the$ *n* $-th instance)}$

Random selection

Poorer-richer graph MC (PRGMC)

Prefer more frequently appearing vertices in graphs

 $P(v(x)) = \frac{R^+ \{ d(v(x)) \}}{|\mathbf{x}|}, \ d(v(x)) = \sum_{e_i \in G_i} \alpha_i h(v(x), e_i)$ (R+(.): a ranking function of d(v(x)) in the ascending order)

- Smaller and denser graph \rightarrow fast but premature convergence
- Fair graph MC (FGMC)
 - Prefer less frequently appearing vertices $P(v(x)) = \frac{R^{-} \{d(v(x))\}}{|\mathbf{x}|}$
 - Larger and sparse graph \rightarrow a diverse representation but slow convergence

($R^{-}(.)$: a ranking function of d(v(x)) in the descending order)

Scene-to-Subtitle Translation

Scenes	Episodes 1~13		Episodes 1~36		
	Original	And petty taught loopy how to ski.			
	UGMC	 did you ask me how to swim. the end how grateful I think she is coming. 	UGMC	 Wow petty that how that is not always so loopy taught if i can do fly it well. How did you have to be that I could ski just. 	
	PRGMC	end how was so happythe end how did you I would	PRGMC	How did you pororo you.How about now you can I do not worry.	
	FGMC	 To show how big you found The end how grateful I am petty nice to lose careful 	FGMC	 Harry realized that how that is it is dangerous I thought that how that I could ski just 	
	SPC	But how do someone stop.The end how was it.	SPC	How about now you can you give me that how that is great.I will see let see how big.	
	Original	Wow poby, you caught so many already.			
	UGMC	- Has been caught	UGMC	 Come out if you go in to hear you guys you have got a lot of fish I caught. You have caught a lot today did you see you later. 	
	PRGMC	- Has been caught	PRGMC	 Everyone has caught a fish for dinner. You have caught a lot today did you ask me how. 	
	FGMC	 What are you guys you have caught a lot. What happened to ten everyone has caught a lot. 	FGMC	 Poby caught a boat a secret that all the wind is so big. You have caught a fish for the art diving. 	
	SPC	 Pororo no pororo has caught She caught the first place 	SPC	 You come with his new friend has caught a very interesting book recently What about pororo has caught a lot of fish 	

Additional Experiment 2

Proposing Dual Memory for Video Q&A

Video Q&A System (1/2)

Overview of Video Q&A System

Video Q&A System (2/2)

- *s_o* is a scoring function to get a candidate hyperedge-answer set
- In this work, cosine distance measuring between words in the question and words in hyperedges will be used as *s*₀
- s_R is a retrieval function to give answers.

Dual Memory Networks

Evaluation

- Examples of generated questions & retrieved answers
- * S and L indicate short-term memory and long-term memory

Questions Can pororo swim out too far? Answers (S/L) Yes / Yes

How can pororo swim well? Because they were so loud / His tall height and great strength

Questions What did eddy trying to go to the playground all day? What does eddy find in her sleep? Answers (S/L) Baking / Making a new toy Stars / Ball

• Video turing test

Dataset	Video Turing Test			
	Pass	Fail	Pass Rate(%)	
Pororo	258	542	32.25	

Future Works : Human-machine Interactive system

