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Resistive MHD instabilities in a Tokamak 
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Flux conservation 
Topology unchanged 

Reconnection of field lines 
Topology changed 

• Ideal MHD instabilities 

- current driven (kink) instabilities 

 internal modes 

 external modes 

- pressure driven instabilities 

 interchange modes 

 ballooning modes 

- current+pressure driven: Edge Localised Modes (ELMs) 

- vertical instability 
 

• Resistive MHD instabilities 

- current driven instabilities 

 tearing modes 

 neoclassical tearing modes (NTMs) 

- nonlinear modes 

 sawtooth 

 disruption 
 

• Microinstabilities - Turbulence 

Tokamak Stability 
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H. P. Furth et al, “Finite‐Resistivity Instabilities of a Sheet Pinch” Phys. Fluids 6 459 (1963) 

Resistive MHD Instabilities 

Flux conservation 
Topology unchanged 

Reconnection of field lines 
Topology changed 

- growing more slowly compared with the ideal instabilities (10-4-10-2 s) 

- resulting from the diffusion or tearing of the magnetic field lines  

  relative to the plasma fluid  

- destroying the nested topology of the magnetic flux surfaces 



- resistive internal kink modes (m ≥2 )  
- driven by perturbed B induced by current layer (J) in plasmas 

- magnetic island formation 

- more tolerable and lower than ideal modes 

- unstable region reduced as sharpness of the current profile, 

  closeness of the wall to the plasma, shear increases 

- stability condition: q0 > 3 

• Tearing Modes 

m = 2 

m = 3 

Resistive MHD Instabilities 
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• Tearing Modes 

Resistive MHD Instabilities 
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- resistive internal kink modes (m ≥2 )  
- driven by perturbed B induced by current layer (J) in plasmas 

- magnetic island formation 

- more tolerable and lower than ideal modes 

- unstable region reduced as sharpness of the current profile, 

  closeness of the wall to the plasma, shear increases 

- stability condition: q0 > 3 
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• Neoclassical Tearing Modes (NTMs) 

Resistive MHD Instabilities 
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m = 3 

- ∆’ < 0 

- Predicted theoretically first, observed experimentally in 1995 
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• Neoclassical Tearing Modes (NTMs) 

Resistive MHD Instabilities 
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Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 

q = m/n = 2 surface (m = 2, n = 1) 

Tim Hender, “Neoclassical Tearing Modes in Tokamaks”, KPS/DPP, Daejun, Korea, 24 April 2009 

q-profile 
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Advanced scenario 

Baseline scenario  
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95 

4 Hybrid scenario 
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- Pressure flattening across magnetic islands due to large transport  

  coefficients along magnetic field lines 
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Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 

q = m/n = 2 surface (m = 2, n = 1) 

Tim Hender, “Neoclassical Tearing Modes in Tokamaks”, KPS/DPP, Daejun, Korea, 24 April 2009 



jBS 
   p 

- Loss of BS current inside magnetic islands acts as helical perturbation  
  current driving the islands – so once seeded, island is sustained by  
  lack of bootstrap current. 

- inside islands p flattened → jBS  vanished  

- pressure gradient drives plasma current 
  (self-generated Bootstrap current):  

Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 
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Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 
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- Missing bootstrap current    
  inside island can be 
  replaced by localised 
  external current drive. 

- complete stabilisation in quantitative agreement with theory. 

Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 
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Resistive MHD Instabilities 
• Neoclassical Tearing Modes (NTMs) 
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Complex non-linear instabilities 
in a Tokamak 
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• Nonlinear low-n internal modes: Sawtooth 

Non-linear MHD Instabilities 

I. T. Chapman et al, PRL (2010) 
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• Nonlinear low-n internal modes: Sawtooth 

Non-linear MHD Instabilities 

RTP tokamak 
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• Nonlinear low-n internal modes: Sawtooth 

- internal (minor) disruption 
- enhanced energy transport  
  in the plasma centre 

http://www.weathervanesofmaine.com/weathervanes/weathervanes-catalog/special-interest-weathervanes 

Non-linear MHD Instabilities 



(j = σE, σ ∝Te
3/2) 

1. T(0) and j(0) rise 

2. q(0) falls below 1  

→ kink instability grows 

3. Fast reconnection event: 

    T, n flattened inside q = 1 surface 

    q(0) rises slightly above 1 

kink stable 

• Nonlinear low-n internal modes: Sawtooth 
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Non-linear MHD Instabilities 

W. Suttrop “Experimental Results from Tokamaks”, IPP Summer School, IPP Garching, September (2001) 
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Courtesy of 
H.K. Park 
(UNIST) 

• Nonlinear low-n internal modes: Sawtooth 

Non-linear MHD Instabilities 
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• Nonlinear low-n internal modes: Sawtooth 

Non-linear MHD Instabilities 

- Increased sawtooth period due to  
  stabilisation by fast ions produced by  
  ICRH leads to the triggering of n = 2  
  NTM activity which causes a  
  termination of the discharge. 
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• Major Disruption 

Non-linear MHD Instabilities 
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- Disruptions are fast (~1 ms) global instabilities that my arise in  

  magnetic confinement fusion devices that use plasma current for  

  confinement such as tokamak. 

- Termination of confinement, uncontrolled loss of thermal and 

magnetic energy 

• Major Disruption 

Non-linear MHD Instabilities 

 - rapid cooling of the plasma → increase of resistivity 

 - large mechanical stresses from JxB forces during current 

   quench 

 - heat load damage to plasma facing components (PFCs) 

 - shift of the plasma column 

 - increase of loop voltage → runaway electrons (0.1-10 MeV)  

   through avalanche amplification, resulting in a > 5 MA of  

   relativistic electron beam 

    → deep penetration of materials (~cm) 
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• Major Disruption 

Non-linear MHD Instabilities 

- Synchrotron radiation  

 IR images (left): electrons of ~ 25 - 35 MeV 

 Visible light images (right): electrons of > 60 MeV 

Junghee Kim et al, “Runaway electron suppression in KSTAR”, KPS/DPP, Daejeon, Korea, 26 April 2013 



- Several classes of “triggering” instabilities lead to  
  this “final” ideal instability 

 - Beta / pressure limits 

 - Radiative limits 

 - Vertical position instability  

 (Vertical Displacement Event (VDE)) 

19 

• Major Disruption 

Non-linear MHD Instabilities 
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- Killer pellet injection: fast conversion of thermal energy to 

  the radiation energy 

- MGI (Massive Gas Injection): H, He, Ne, Ar, Kr, Xe, etc. 

- RMP (Resonant Magnetic Perturbation) to reduce runaway electrons 

Non-mitigated 
VDE 

Neon gas jet  
injection 

triggered by  
control system 

• Disruption Mitigation 

Non-linear MHD Instabilities 



- conducting wall 

- magnetic shear 

- minimum-B configuration 

- profile optimisation 

- dynamic stabilisation  

  by feedback control 

- … 

Tokamak Instabilities and Their Control 

J ∇p 

Tim Hender, “Neoclassical Tearing Modes in Tokamaks”, KPS/DPP, Daejun, Korea, 24 April 2009 
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