Introduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

How to describe a plasma?

Plasmas as Fluids

· Ideal MHD

- Single-fluid model
- Ideal:

Perfect conductor with zero resistivity

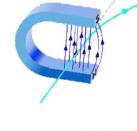
- MHD:

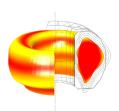
Magnetohydrodynamic (magnetic fluid dynamic)

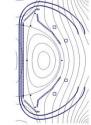
Low-frequency, long-wavelength collision-dominated plasma

- Applications:

Equilibrium and stability in fusion plasmas







$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$$

$$\rho \frac{d\vec{v}}{dt} = \vec{J} \times \vec{B} - \nabla p$$

$$\frac{d}{dt}\left(\frac{p}{\rho^{\gamma}}\right) = 0$$

$$\vec{E} + \vec{v} \times \vec{B} = 0$$

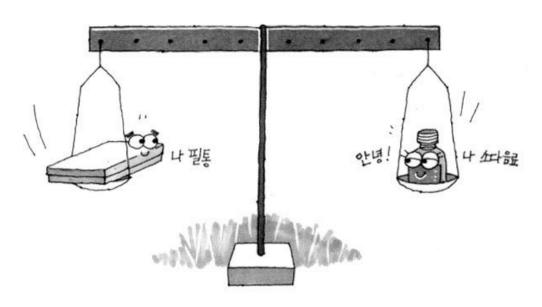
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

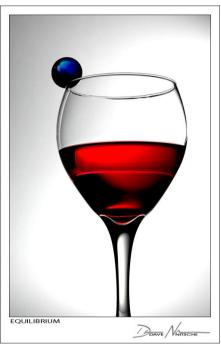
$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\nabla \cdot \vec{B} = 0$$

What is plasma equilibrium?

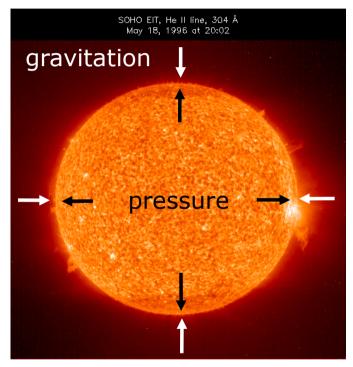
Equilibrium and Stability





Equilibrium? Yes! Forces are balanced

Equilibrium and Stability



Equilibrium in the sun

We need a fusion device which confines the plasma particles to some region for a sufficient time period by making equilibrium.

Equilibrium

Basic Equations

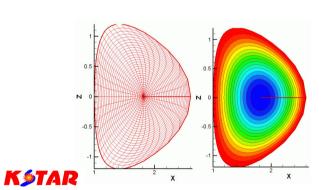
- MHD equilibrium equations: time-independent with $\mathbf{v} = 0$ (static)

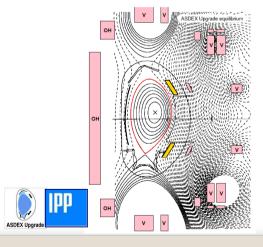
$$\nabla p = \vec{J} \times \vec{B}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\nabla \cdot \vec{B} = 0$$

- → Force balance
- → Ampere's law
- → Closed magnetic field lines





$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$$

$$\rho \frac{d\vec{v}}{dt} = \vec{J} \times \vec{B} - \nabla p$$

$$\frac{d}{dt} \left(\frac{p}{\rho^{\gamma}} \right) = 0$$

$$\vec{E} + \vec{v} \times \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\nabla \cdot \vec{B} = 0$$

Magnetic and Kinetic Pressure

Plasma Equilibrium

$$\nabla p = \vec{J} \times \vec{B}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$
 \rightarrow Ampere's law

$$\nabla \cdot \vec{B} = 0$$

 $\nabla p = \vec{J} \times \vec{B}$ \rightarrow Force balance

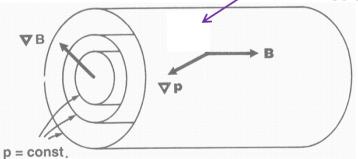
kinetic pressure balanced by JxB (Lorentz) force

- $\nabla \cdot \vec{B} = 0$ \rightarrow Closed magnetic field lines

$$\vec{B} \cdot \nabla p = 0 \qquad \vec{J} \cdot \nabla p = 0$$

induced by the pressure gradient:

causing a decrease in $\mathbf{B} \to \text{diamagnetism}$

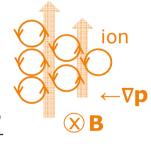


Diamagnetic current

$$\vec{v}_{D,\nabla p} = -\frac{\nabla p \times \vec{B}}{nqB^2}$$

$$\vec{v}_{D,\nabla p} = -\frac{\nabla p \times \vec{B}}{nqB^2}$$

$$\vec{J} = n_i q_i \vec{v}_{D,i} + n_e q_e \vec{v}_{D,e} = \frac{\vec{B} \times \nabla p}{B^2}$$



- If B is applied, plasma equilibrium can be built by itself due to induction of diamagnetic current. $\nabla p = J \times B$

Magnetic and Kinetic Pressure

Plasma Equilibrium

$$\nabla p = \vec{J} \times \vec{B}$$

kinetic pressure balanced by JxB (Lorentz) force

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\vec{R} = 0$$

 $abla p = \vec{J} imes \vec{B}$ \rightarrow Force balance kinetic probalanced $\nabla imes \vec{B} = \mu_0 \vec{J}$ \rightarrow Ampere's law $\nabla \cdot \vec{B} = 0$ \rightarrow Closed magnetic field lines

$$\nabla p = (\nabla \times B) \times B / \mu_0$$
$$= [(B \cdot \nabla)B - \nabla(B^2 / 2)] / \mu_0$$

$$\nabla (p + B^2 / 2\mu_0) = (B \cdot \nabla)B / \mu_0$$

$$\frac{E_{mag}^*}{V} = \frac{BH}{2} = \frac{B^2}{2\mu_0}$$

Assuming the field lines are straight and parallel

$$p + \frac{B^2}{2\mu_0} = \text{constant}$$

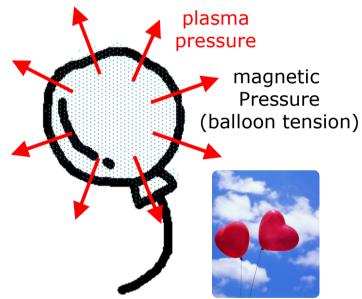
 $p + \frac{B^2}{2\mu_0} = \text{constant}$ Total sum of kinetic pressure and magnetic field energy density (magnetic pressure) will be a constant (magnetic pressure) will be a constant

Magnetic and Kinetic Pressure

Concept of Beta

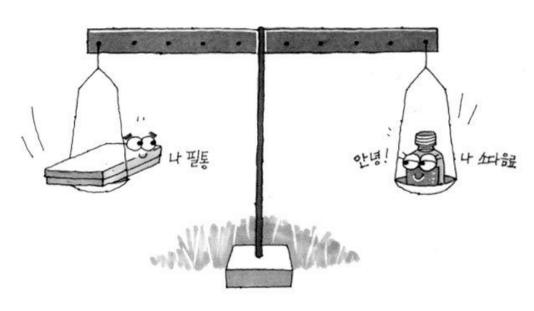
$$\beta = \frac{p}{B^2 / 2\mu_0} = \frac{(n_i + n_e)kT}{B^2 / 2\mu_0}$$

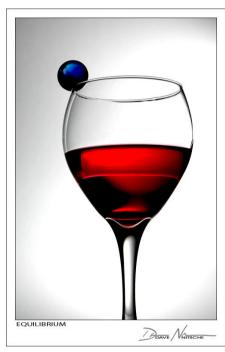
- The ratio of the plasma pressure to the magnetic field pressure
- A measure of the degree to which the magnetic field is holding a non-uniform plasma in equilibrium.
- In most magnetic configurations, fusion plasma confinement requires an imposed magnetic pressure significantly exceeding the particle kinetic pressure.



What is plasma stability?

Equilibrium and Stability

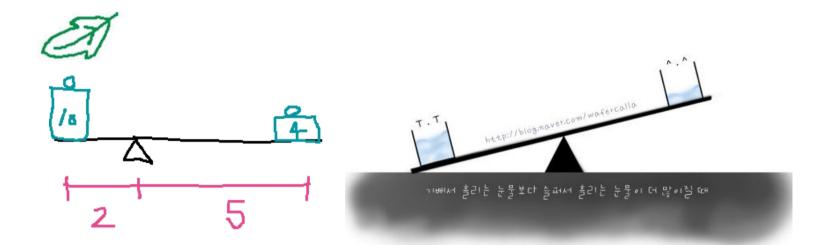




Equilibrium? Yes! Forces are balanced

Stable? No!

Equilibrium and Stability



Equilibrium? Yes! Forces are balanced

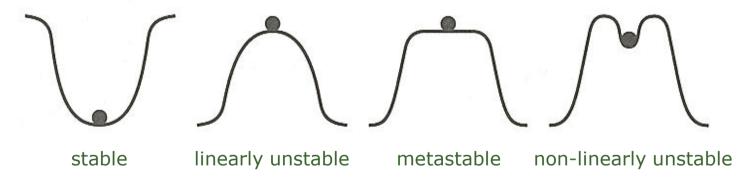
Stable? No! The system cannot recover.

We need a fusion device which confines the plasma particles to some region for a sufficient time period in a stable way.

http://www.amazon.co.uk/11Inch-Latex-Orange-Wedding-Balloons/dp/B004JUQG4Q http://www.psdgraphics.com/backgrounds/blue-water-drop-background/

Definition of Stability

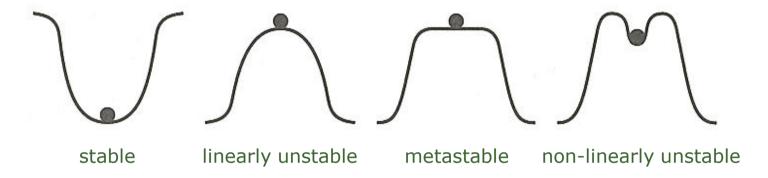
- A small change (disturbance) of a physical system at some instant changes the behavior of the system only slightly at all future times *t*.
- The fact that one can find an equilibrium does not guarantee that it is stable. Ball on hill analogies:



linear: with small perturbation non-linear: with large perturbation

- Generation of instability is the general way of redistributing energy which was accumulated in a non-equilibrium state.

Definition of Stability



- Assuming all quantities of interest linearised about their equilibrium values.

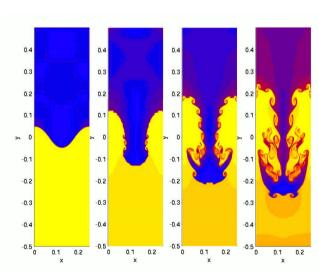
$$Q(\vec{r},t) = Q_0(\vec{r}) + \tilde{Q}_1(\vec{r},t) \quad \text{small 1st order perturbation} \quad \tilde{Q}_1 / \left| Q_0 \right| << 1$$

$$\widetilde{Q}_{1}(\vec{r},t) = Q_{1}(\vec{r})e^{-i\omega t} = Q_{1}(\vec{r})e^{-i(\omega_{r}+i\omega_{i})t} = Q_{1}(\vec{r})e^{-i\omega_{r}t}e^{\omega_{i}t} \qquad \omega = \omega_{r} + i\omega_{i}$$

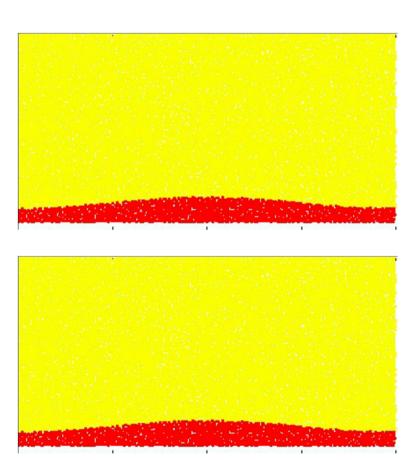
Im $\omega > 0$ ($\omega_i > 0$): exponential instability

Im $\omega \leq 0$ ($\omega_i \leq 0$): exponential stability

Gravitational Instability

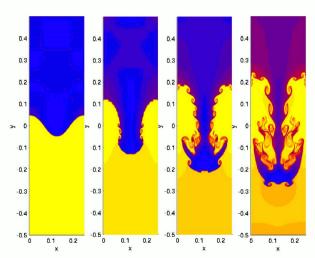


Rayleigh-Taylor instability

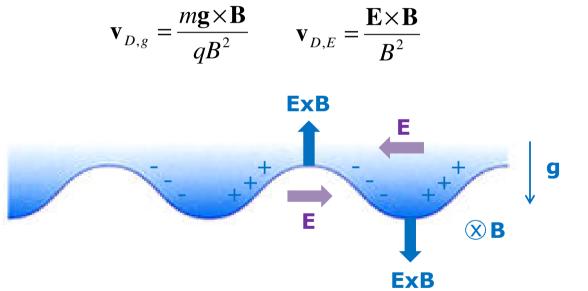


Gravitational Instability

$$\mathbf{v}_{DF} = \frac{\overline{\mathbf{F}} \times \mathbf{B}}{qB^2}$$



Rayleigh-Taylor instability



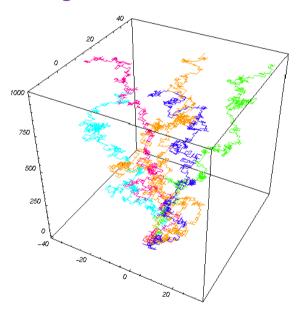
What is plasma transport?

Classical Transport

- Particle transport

random walk: no net flux (zero average)

with gradient: net flux down the gradient (diffusion)

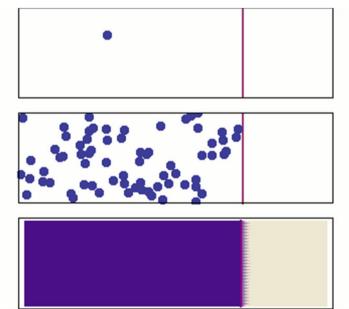


http://functions.wolfram.com/Constants/Pi/visualizations/2/ShowAll.html

- Classical Transport
 - Particle transport

random walk: no net flux (zero average)

with gradient: net flux down the gradient (diffusion)



Classical Transport

- Particle transport

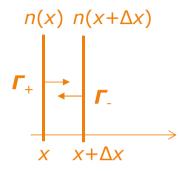
Particle flux:
$$\vec{\Gamma} = n\vec{v}$$
 [#/m²s]

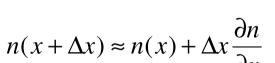
$$\Gamma_{+} = \frac{n(x)}{2} \frac{\Delta x}{\tau}, \quad \Gamma_{-} = \frac{n(x + \Delta x)}{2} \frac{\Delta x}{\tau}$$

$$\Gamma = \Gamma_{+} - \Gamma_{-} = \frac{\Delta x}{2\tau} \left[n(x) - n(x + \Delta x) \right] \qquad n(x + \Delta x) \approx n(x) + \Delta x \frac{\partial n}{\partial x}$$

$$= -\frac{(\Delta x)^2}{2\tau} \frac{\partial n}{\partial x} = -D \frac{\partial n}{\partial x} : \text{Fick's law}$$

$$D = \frac{(\Delta x)^2}{2\tau} : \text{ diffusion coefficient (m}^2/\text{s})$$





Adolf Eugen Fick (1829-1901)

The heat and momentum fluxes can be estimated in the similar fashion.

- Classical Transport
 - Heat transport

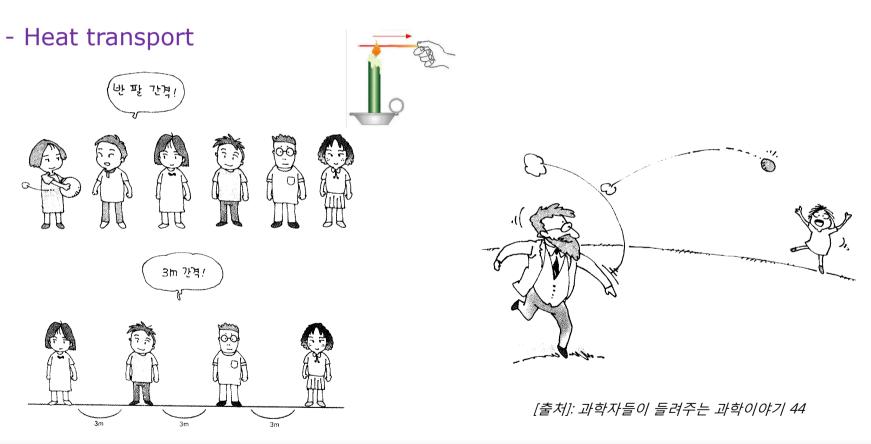
Heat flux

$$q = -\kappa \frac{\partial T}{\partial x}$$
 : Fourier's law

$$\kappa \sim \frac{n(\Delta x)^2}{\tau} \sim nD$$
: thermal conductivity

Jean-Baptiste Joseph Fourier (1768-1830)

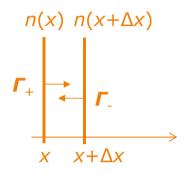
Classical Transport



Classical Transport

- Particle transport in weakly ionised plasmas

$$D = \frac{(\Delta x)^2}{2\tau}$$

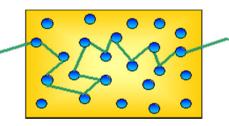


Estimate transport coefficients: Δx from mean free path

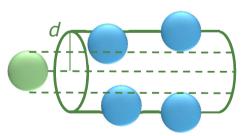
$$\Delta x = \lambda_m = \frac{1}{n_n \sigma}$$

$$\frac{vt}{n_n \pi d^2 vt} = \frac{1}{n_n \pi d^2} = \frac{1}{n_n \sigma} : \text{ particle approach}$$

$$\Gamma = \Gamma_0 e^{-n_n \sigma x} \equiv \Gamma_0 e^{-x/\lambda_m}$$
 : fluid approach
$$d\Gamma = -\sigma n_n \Gamma dx$$



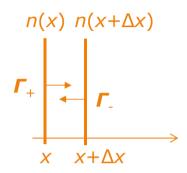
Neutral particles

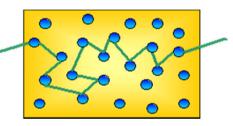


- Classical Transport
 - Particle transport in weakly ionised plasmas

$$D = \frac{(\Delta x)^2}{2\tau}$$

Estimate transport coefficients: τ from collision frequency with neutrals





Neutral particles

Classical Transport

- Particle transport in weakly ionised plasmas

$$n_{\alpha}m_{\alpha}\left(\frac{\partial \vec{v}_{\alpha}}{\partial t} + \vec{v}_{\alpha} \cdot \nabla \vec{v}_{\alpha}\right) = nq_{\alpha}\left(\vec{E} + \vec{v}_{\alpha} \times \vec{B}\right) - \nabla p_{\alpha} - n_{\alpha}m_{\alpha}v_{\alpha n}\left(\vec{v}_{\alpha} - \vec{v}_{n}\right)$$

$$0 = nq_{\alpha}\vec{E} - kT_{\alpha}\nabla n_{\alpha} - n_{\alpha}m_{\alpha}v_{\alpha n}\vec{v}_{\alpha}$$

$$n_{\alpha}\vec{v}_{\alpha} = \frac{nq_{\alpha}\vec{E}}{m_{\alpha}v_{\alpha n}} - \frac{kT_{\alpha}}{m_{\alpha}v_{\alpha n}}\nabla n_{\alpha}$$

$$\vec{\Gamma}_{\alpha} = n_{\alpha} \vec{v}_{\alpha} = \pm \mu_{\alpha} n_{\alpha} \vec{E} - D_{\alpha} \nabla n_{\alpha}$$

$$\mu \equiv \frac{|q_{\alpha}|}{m_{j}v_{\alpha n}}$$
: Mobility

$$D = \frac{kT_{\alpha}}{m_{\alpha}v_{\alpha m}} \sim v_{th}^2 \tau \sim \frac{\lambda_m^2}{\tau} \quad : \text{ Diffusion coefficient}$$

- Classical Transport
 - Particle transport in weakly ionised plasmas

Ambipolar Diffusion

Faster electrons slower ions \rightarrow Charge separation \rightarrow E-field induction

→ Electrons decelerated, → Electrons and ions ions accelerated diffuse together

$$\begin{split} \vec{\Gamma}_i &= \vec{\Gamma}_e \\ \vec{\Gamma} &= -D_a \nabla n \\ D_a &\equiv \frac{\mu_i D_e + \mu_e D_i}{\mu_i + \mu_e} \sim D_i + \frac{T_e}{T_i} D_i \end{split}$$

Classical Transport

- Particle transport in weakly ionised plasmas with magnetic field

$$\vec{\Gamma}_{\perp\alpha} = n\vec{v}_{\perp\alpha} = \pm \mu_{\perp\alpha} n_{\alpha} \vec{E} - D_{\perp\alpha} \nabla n_{\alpha} + \frac{n(\vec{v}_E + \vec{v}_D)}{1 + (v^2 / \omega_c^2)}$$

$$\mu_{\perp} \equiv \frac{\mu}{1 + \omega_c^2 \tau^2}$$

$$D_{\perp} = \frac{D}{1 + \omega_c^2 \tau^2} \sim \frac{kTV}{m_i \omega_c^2} \sim v_{th}^2 \frac{r_L^2 V}{v_{th}^2} \sim \frac{r_L^2}{\tau} \qquad r_L = \frac{m v_{\perp}}{|q|B}$$

$$\omega_c = \frac{|q|B}{m}$$

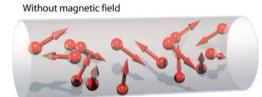
$$r_L = \frac{m v_{\perp}}{|q|B}$$

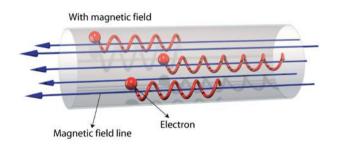
$$\mu \equiv \frac{\left| q_{\alpha} \right|}{m_{\alpha} v_{\alpha n}}$$

$$\vec{\Gamma}_{\alpha} = n_{\alpha} \vec{v}_{\alpha} = \pm \mu_{\alpha} n_{\alpha} \vec{E} - D_{\alpha} \nabla n_{\alpha}$$

$$D = \frac{k T_{\alpha}}{m_{i} v_{\alpha n}} \sim v_{th}^{2} \tau \sim \frac{\lambda_{m}^{2}}{\tau}$$

$$D = \frac{kT_{\alpha}}{m_{j}V_{\alpha n}} \sim v_{th}^{2}\tau \sim \frac{\lambda_{m}^{2}}{\tau}$$





- Classical Transport
 - Particle transport in fully ionised plasmas with magnetic field

$$\vec{\Gamma}_{\perp} = n\vec{v}_{\perp} = -D_{\perp}\nabla n$$

$$D_{\perp} = \frac{\eta_{\perp}n\sum kT}{B^{2}}$$

 τ from collision frequency

$$v_{ee} \approx v_{ei} \propto \frac{ne^4}{\sqrt{m_e} T_e^{3/2}}$$

$$v_{ie} = \left(\frac{m_e}{m_i}\right) v_{ee}$$

$$v_{ii} = \left(\frac{m_e}{m_i}\right)^{1/2} \left(\frac{T_e}{T_i}\right)^{3/2} v_{ee}$$

