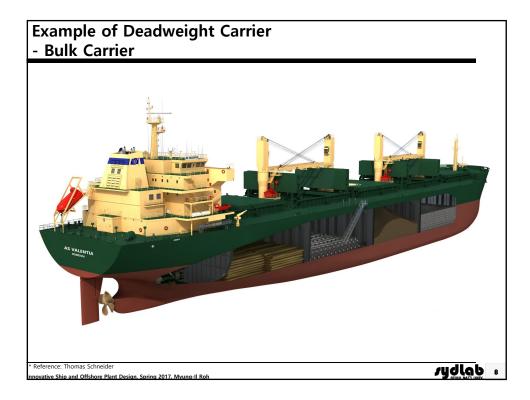
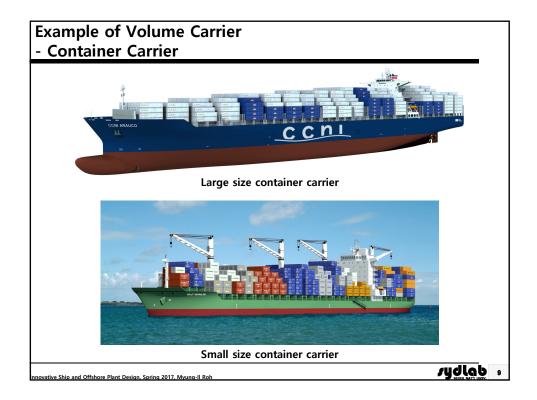
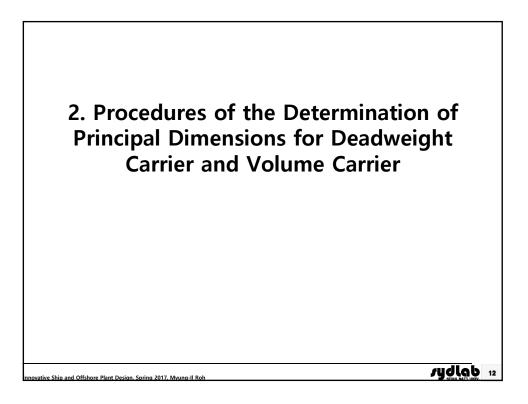
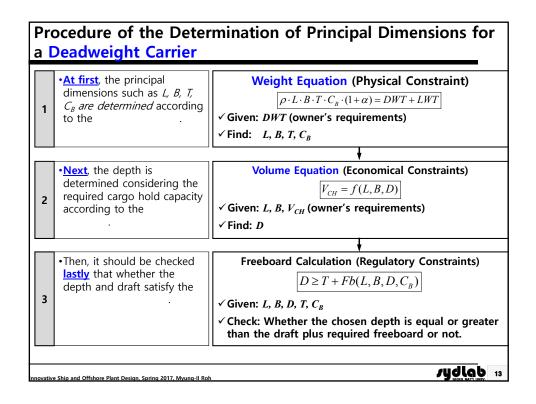
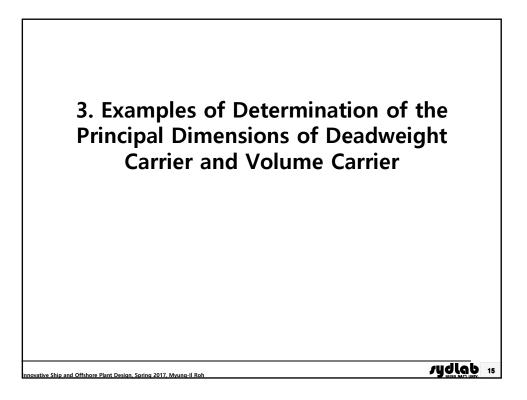

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
Image: Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh	JUJIQU 2

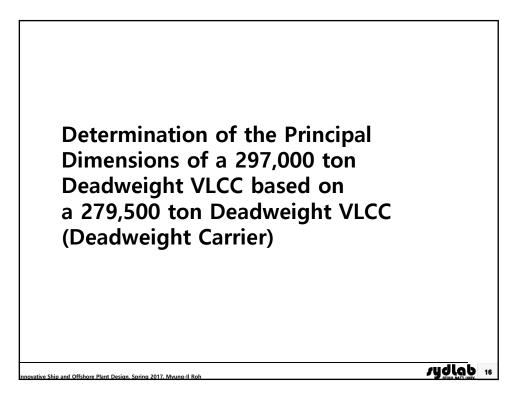


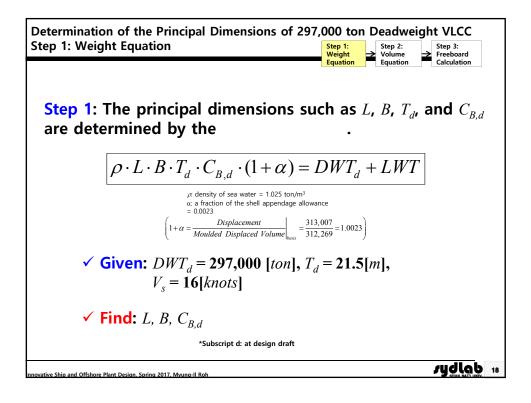


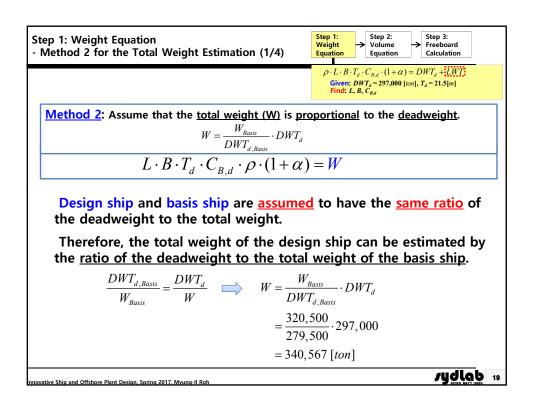


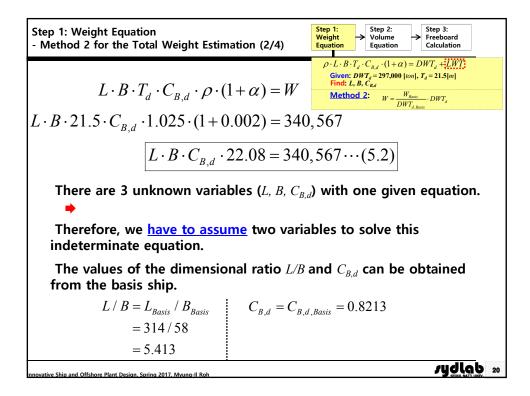


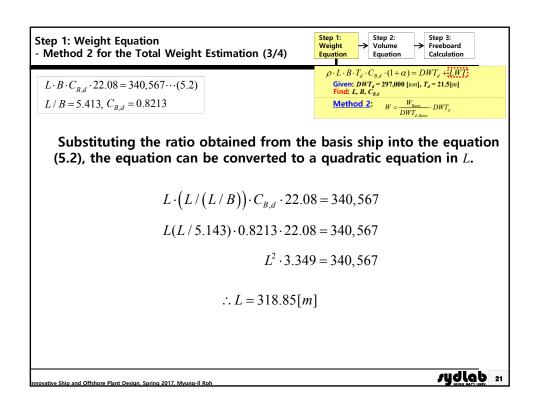


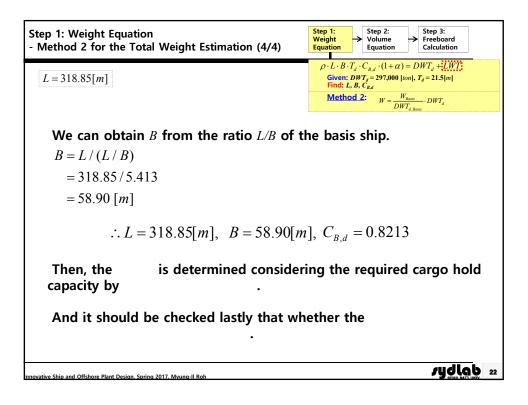


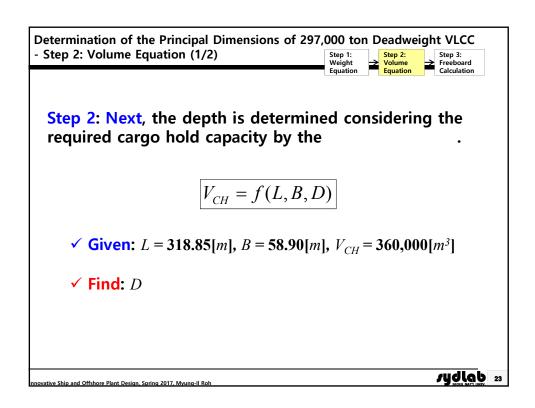


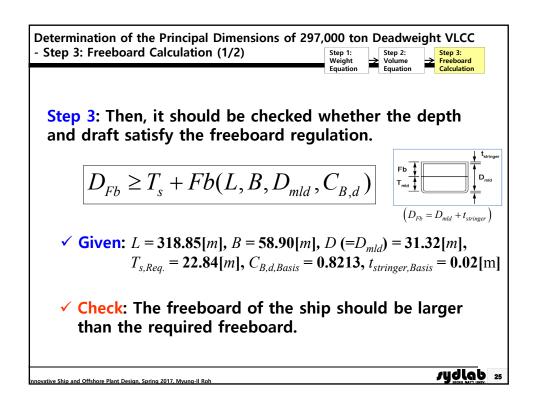

• <u>At first</u> , the principal dimensions such as <i>L</i> , <i>B</i> , <i>D</i>	Volume Equation (Economical Constraints)
are determined to provide	$V_{CH} = f(L, B, D)$
the required cargo hold	\checkmark Given: V_{CH} (owner's requirements)
capacity according to the	✓ Find: <i>L</i> , <i>B</i> , <i>D</i>
· ·	ŧ
• <u>Next</u> , the principal	Weight Equation (Physical Constraint)
dimensions such as T , C_B are	$\rho \cdot L \cdot B \cdot T \cdot C_{B} \cdot (1+\alpha) = DWT + LWT$
2 <i>determined</i> according to the	
-	\checkmark Given: L, B, DWT (owner's requirements) \checkmark Find: T C _B
•Then, it should be checked	Freeboard Calculation (Regulatory Constraints)
lastly that whether the	$D \ge T + Fb(L, B, D, C_B)$
depth and draft satisfy the	$D \ge T + TO(L, D, D, C_B)$
3	\checkmark Given: <i>L</i> , <i>B</i> , <i>D</i> , <i>T</i> , <i>C</i> _{<i>B</i>}
	✓ Check: Whether the chosen depth is equal or greate than the draft plus required freeboard or not.

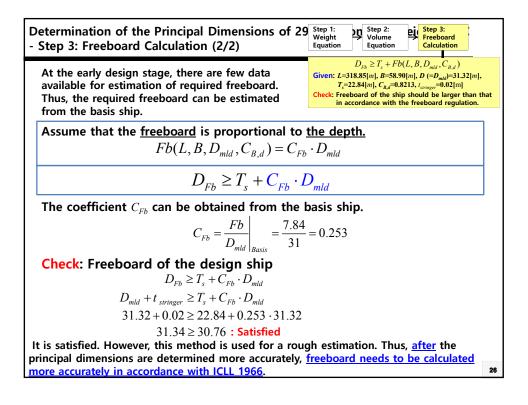


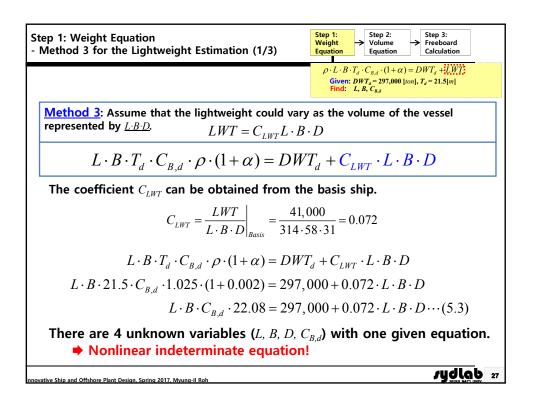


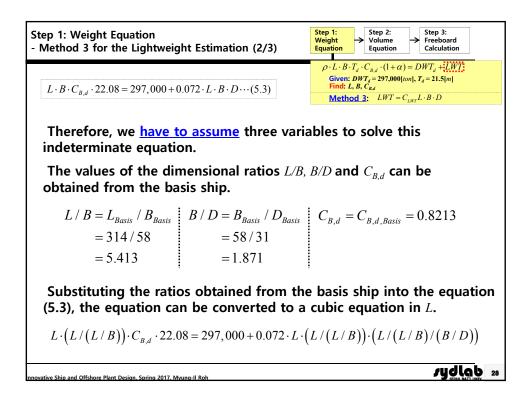

Desig	n Ship: 297,	000 Ton Deadwe	eight VLCC (Ver	y La <mark>rge</mark> C	rude oil Carrier) Basis Ship
		Basis Ship	Owner's Requirements	Remark	Dimensional Ratios
	Loa	abt. 330.30 m			L/B = 5.41.
	Lbp	314.00 m			,
Principal	B,mld	58.00 m			$B/T_d = 2.77,$
Dimensions	Depth,mld	31.00 m			B/D = 1.87,
	Td(design)	20.90 m	21.50 m		L/D = 10.12
	Ts(scant.)	22.20 m	22.84 m		
	veight (scant)	301,000 ton	320,000 ton		• Hull Form Coefficient
	eight (design)	279,500 ton	297,000 ton		$C_{B_{d}} = 0.82$
	(at design draft ith 15% Sea Margin)	15.0 knots	16.0 knots		• Lightweight (=41,000 ton
	TYPE	B&W 7S80MC			- Structural weight
M/E	MCR	32,000 PS x 74.0 RPM			\approx 36,400 ton (88%)
	NCR	28,800 PS x 71.4 RPM			- Outfit weight
U	SFOC	122.1 g/BHP·h			$\approx 2,700 \text{ ton } (6.6\%)$
5 Z	DFOC	84.4 ton/day		Based on NCR	- Machinery weight
Cru	ising Range	26,000 N/M	26,500 N/M		≈ 1,900 ton (4.5%)
Shape of	Midship Section	Double side / Double bottom	Double side / Double bottom		Cargo density = $\frac{\text{Deadweight}_{scant}}{\text{Cargo hold capacity}}$
	Cargo Hold	abt. 345,500 m ³	abt. 360,000 m ³		<u> </u>
	H.F.O.	abt. 7,350 m ³			$=\frac{301,000}{345,500}$
Capacity	D.O.	abt. 490 m ³			
ape	Fresh Water	abt. 460 m ³			$= 0.87[ton / m^3] > 0.7$
	Ballast	abt. 103,000 m ³		Including Peak Tanks	Deadweight Carrier

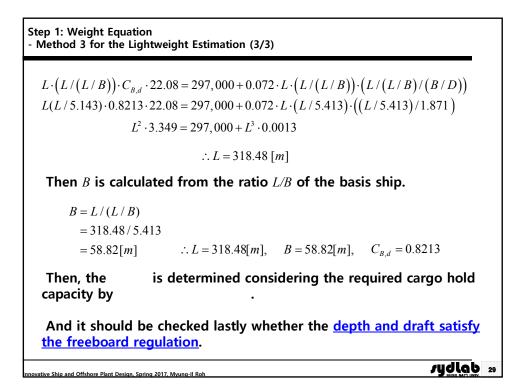


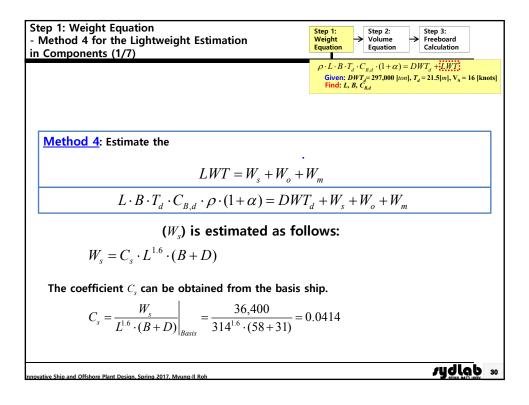


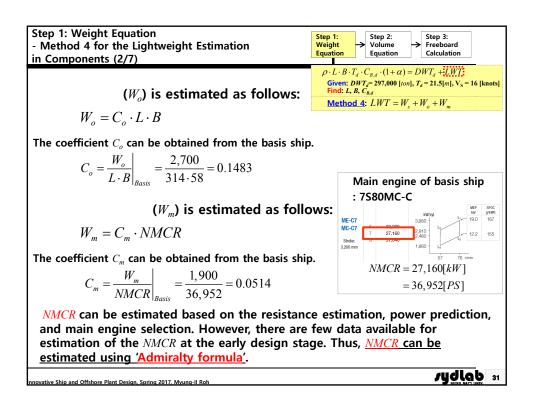


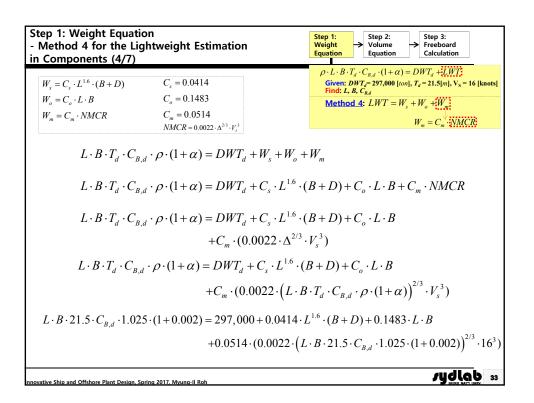


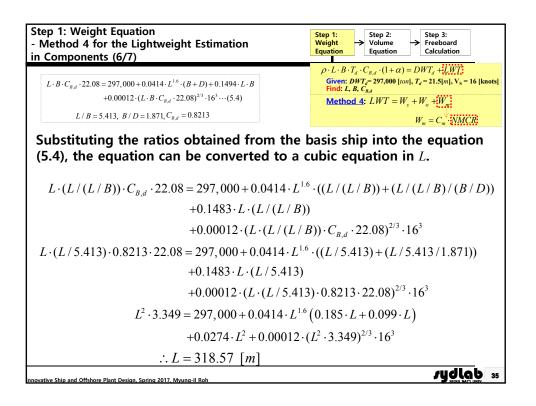


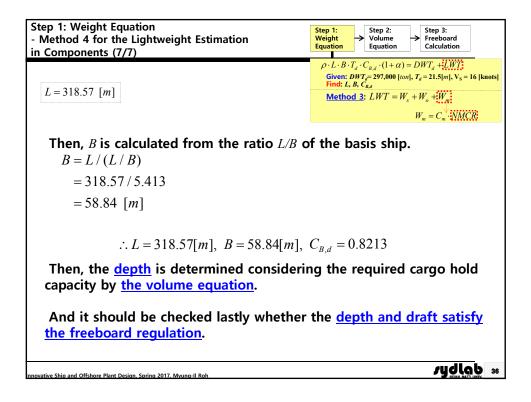

etermination of the Principal Dimensions of 2 Step 2: Volume Equation (2/2)	9 Step 1: Weight Equation Equation Calculation				
	$V_{CH} = f(L,B,D)$ Given: L=318.85[m], B=58.90[m], V_{CH} = 360,000[m ³] Find: D				
Assume that the <u>cargo hold capacity</u> is proportional to <u><i>L</i>·<i>B</i>·<i>D</i></u> . $f(L, B, D) = C_{C\mu} \cdot L \cdot B \cdot D$					
$V_{CH} = C_{CH} \cdot L \cdot B \cdot D$					
The coefficient C_{CH} can be obtained from th	e basis ship.				
$C_{CH} = \frac{V_{CH}}{L \cdot B \cdot D} \bigg _{Basis} = \frac{345,5}{314 \cdot 55}$	$\frac{500}{8\cdot31} = 0.612$				
We use the same coefficient C_{CH} for the det	ermination of depth.				
$V_{CH} = C_{CH} \cdot L \cdot B \cdot D$					
$360,000 = 0.612 \times 318.85 \times 58.90 \times D$					
$\therefore D = 31.32[m]$					
vative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh	<i>s</i> udlab				

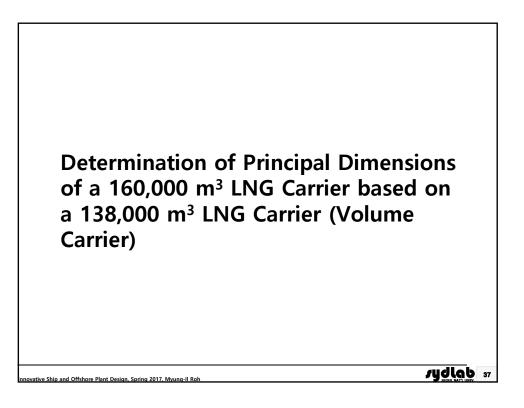


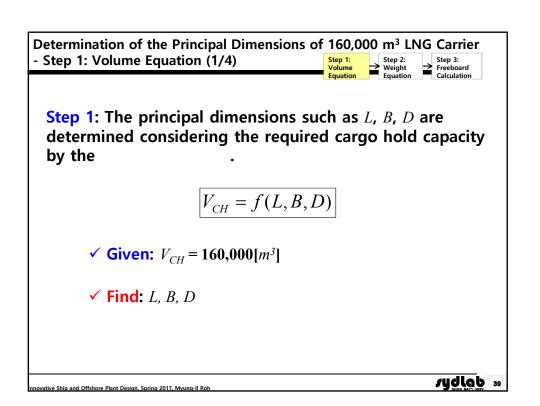


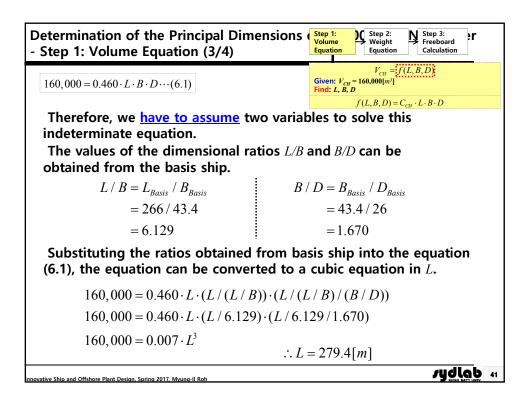


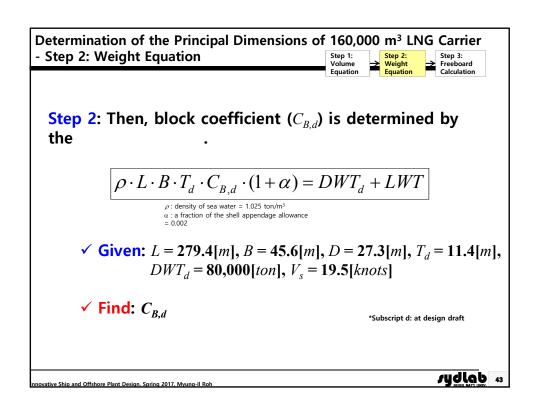


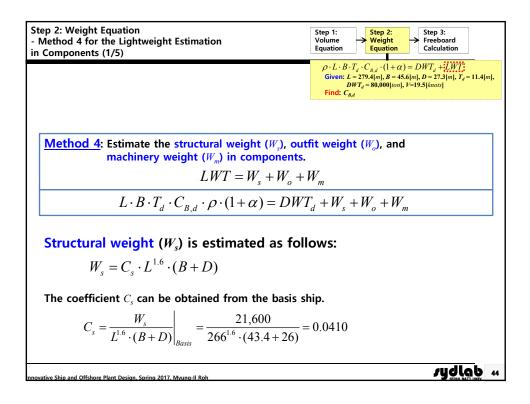


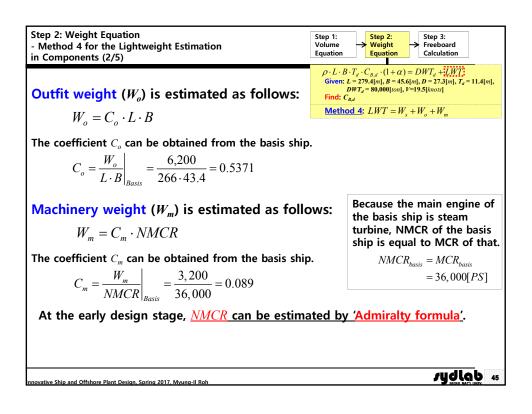


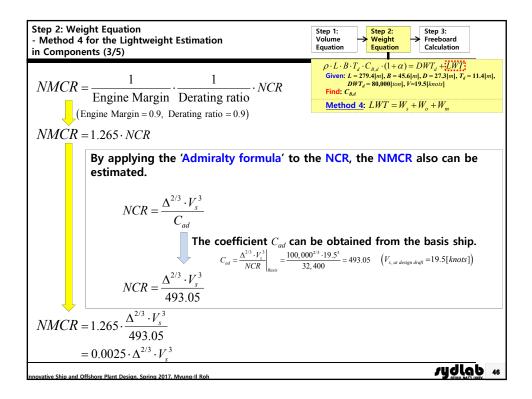

Step 1: Weight Equation - Method 4 for the Lightweight in Components (5/7)	t Estimation
In components (3/7)	
$I \cdot B \cdot 21 \cdot 5 \cdot C = \cdot 1 \cdot 025 \cdot (1 + 0 \cdot 0)$	$D2) = 297,000 + 0.0414 \cdot L^{1.6} \cdot (B+D) + 0.1483 \cdot L \cdot B$
$E = D = 21.5 + C_{B,d} = 1.025 + (1 + 0.000)$	
	$+0.0514 \cdot (0.0022 \cdot (L \cdot B \cdot 21.5 \cdot C_{B,d} \cdot 1.025 \cdot (1+0.002))^{2/3} \cdot 16^3)$
L D C 22.00 207.000	- 0.0414 716 (D - D) - 0.1402 7 D
$L \cdot B \cdot C_{B,d} \cdot 22.08 = 297,000$	$+0.0414 \cdot L^{1.6} \cdot (B+D) + 0.1483 \cdot L \cdot B$
+0.00012	$\cdot (L \cdot B \cdot C_{Bd} \cdot 22.08)^{2/3} \cdot 16^3 \cdots (5.4)$
 Nonlinear indete 	ariables (<i>L</i> , <i>B</i> , <i>D</i> , $C_{B,d}$) with one equation. rminate equation!
Therefore, we <u>have to a</u> indeterminate equation.	ssume three variables to solve this
The values of the dimen obtained from the basis	nsional ratios L/B , B/D , and $C_{B,d}$ can be ship.
$L / B = L_{Basis} / B_{Basis}$	$B / D = B_{Basis} / D_{Basis} \qquad \qquad$
=314/58	= 58/31
= 5.413	=1.871
novative Ship and Offshore Plant Design, Spring 2017, Myun	



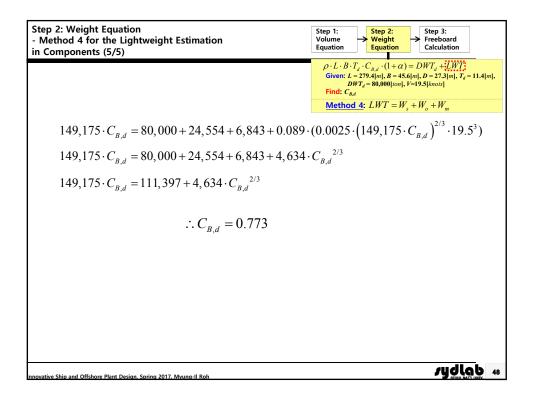

Design	Ship: 160	0,000 m ³ LNG C	arrier		
		Basis Ship	Owner's Requirements	Remark	Basis Ship Oimensional Ratios
	L _{OA}	277.0 m			L / B = 6.31,
-	L _{BP}	266.0 m			$B/T_d = 3.81,$
Principal	B _{mld}	43.4 m			B/D = 1.67,
Dimensions	D _{mld}	26.0 m			L/D = 10.23
-	T _d (design)	11.4 m	11.4 m		• Hull Form Coefficient $C_{B_{d}} = 0.742$
	T _s (scant)	12.1 m	12.1 m		 Lightweight (=31,000 to
Cargo Ho	d Capacity	138,000 m ³	160,000 m ³		- Structural weight
Servic	e Speed	19.5 knots	19.5 knots		$\approx 21,600 \text{ ton } (\approx 70\%)$
	Туре	Steam Turbine	2 Stroke Diesel Engine (×2)		- Outfit weight ≈ 6,200 ton (≈ 20%)
Main Engine	DMCR	36,000 PS \times 88 RPM		With Engine Margin 10%	- Machinery weight ≈ 3,200 ton (≈ 10%)
	NCR	32,400 PS \times 85 RPM		With Sea Margin 21%	Cargo density = $\frac{\text{Deadweight}}{Cargo hold cargo$
SF	FOC	180.64 g/BHP·h			Cargo noiu cap
Deadweig	ht (design)	69,000 ton	80,000 ton		$=\frac{69,000}{138,000}$
DI	FOC	154.75 ton/day			$= 0.5 [ton / m^3] < 0.$
Cruisir	g Range	13,000 N/M	11,400 N/M		

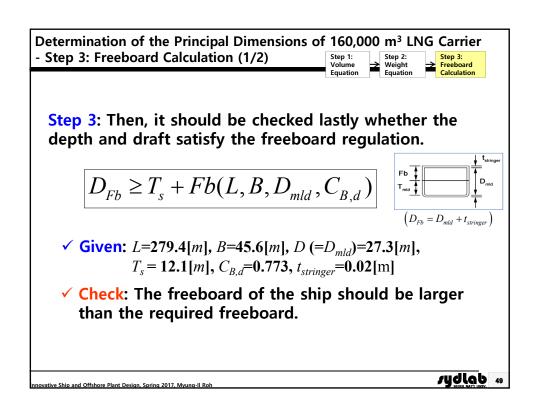


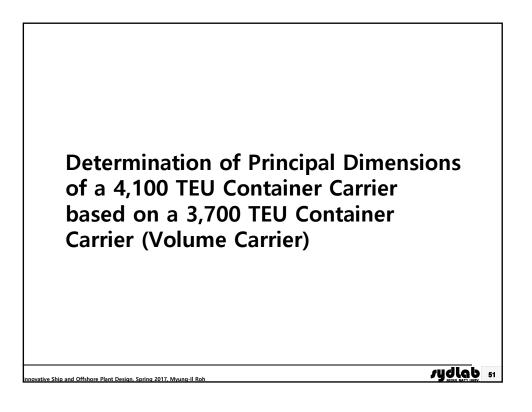

etermination of the Principal Dimens Step 1: Volume Equation (2/4)	ions Step 1: 1 Step 2: N Step 3: Volume Equation Equation Calculation
	$V_{CH} = \frac{f(L, B, D)}{f(L, B, D)}$ Given: $V_{CH} = 160,000[m^3]$ Find: L, B, D
Assume that the cargo hold capacity is p	proportional to <u>L·B·D</u> .
$f(L, B, D) = C_{CH}$	$\cdot L \cdot B \cdot D$
$V_{CH} = C_{CH} \cdot I$	$L \cdot B \cdot D$
Coefficient C_{CH} can be obtained from $C_{CH} = \frac{V_{CH}}{L \cdot B \cdot D}\Big _{Basis} = \frac{138,000}{266 \cdot 43.4 \cdot 26} = 0.$	-
$V_{CH} = C_{CH} \cdot L \cdot$	$B \cdot D$
$160,000 = 0.460 \cdot L$	$\cdot B \cdot D \cdots (6.1)$
There are 3 unknown variables (<i>L</i> , <i>B</i> , ➡ Nonlinear indeterminate equation	•
ative Ship and Offshore Plant Design, Spring 2017, Myung-Il Roh	ydlab

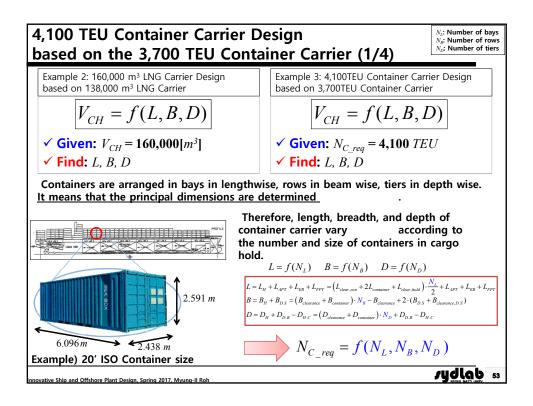


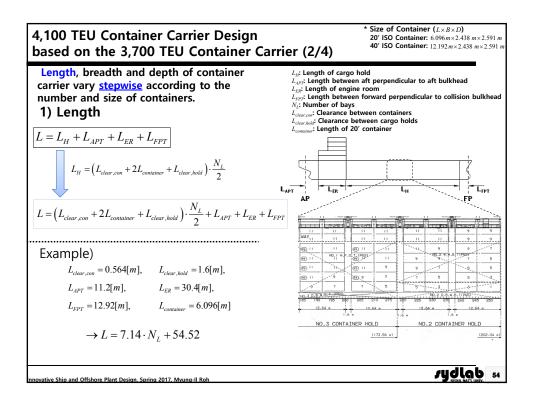

Determination of the Principal Dimensions of 160,000 m³ LNG Carrier - Step 1: Volume Equation (4/4) L = 279.4 [m]We can obtain *B* and *D* from the ratios *L/B* and *B/D* of the basis ship. $B = L/(L/B) \qquad D = L/(L/B)/(B/D) = 279.4/6.129 = 279.4/6.129/1.669 = 27.3 [m]$ $\therefore L = 279.4[m], \quad B = 45.6[m], \quad D = 27.3[m]$ $\therefore L = 279.4[m], \quad B = 45.6[m], \quad D = 27.3[m]$

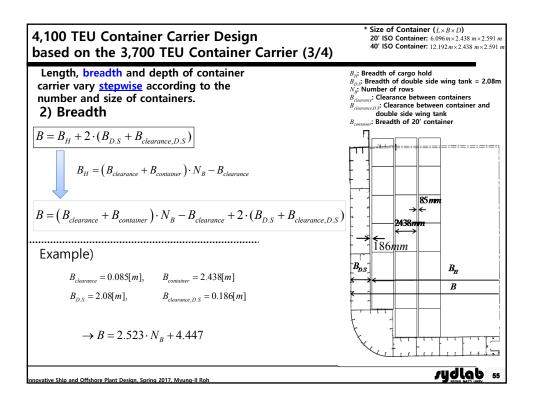


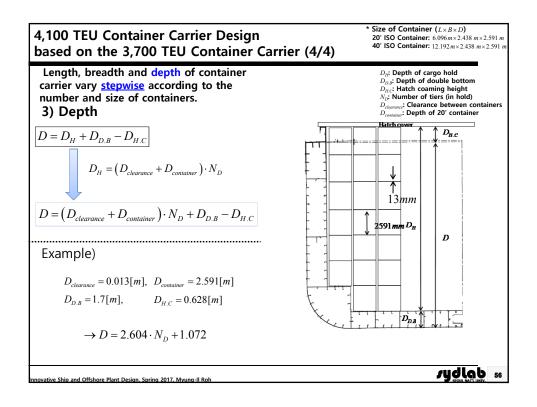


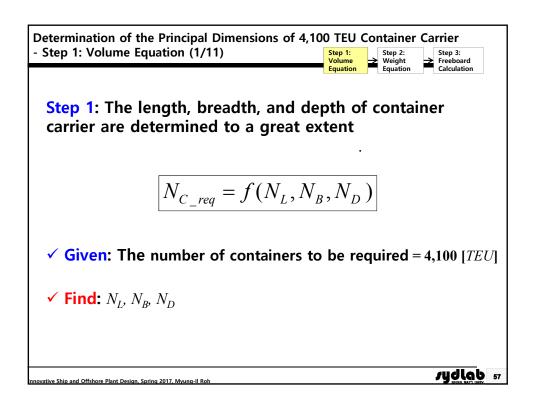


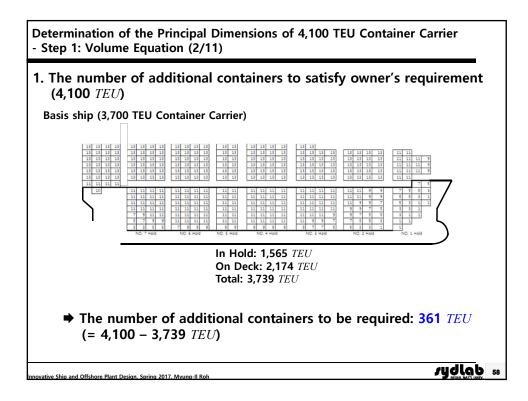


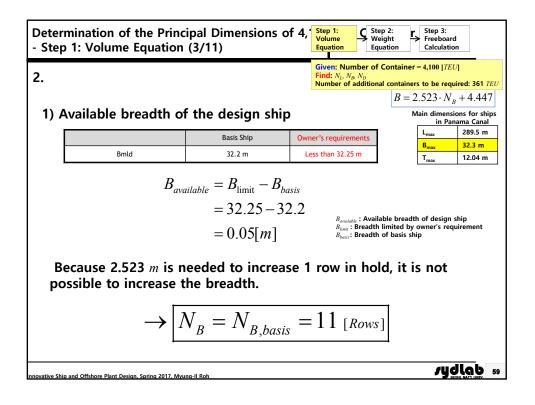


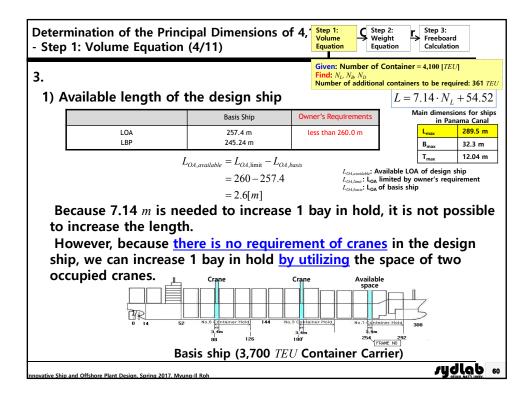

Determination of the Principal Dimensions - Step 3: Freeboard Calculation (2/2)	Equation Equation Calculation		
At the early design stage, there are few data available for estimation of required freeboard. Thus, the required freeboard can be estimated from the basis ship.	$\begin{split} D_{Fb} \geq T_s + Fb(L,B,D_{mld},C_{B,d}) \\ \text{Given: } L = 279.4[m], B = 45.6[m], D(-D_{md}) = 27.3[m], \\ T_s = 12.1[m], C_{B,d} = 0.773, t_{intrager} = 0.02[m] \\ \text{Check: Freeboard of the ship should be larger than that in accordance with the freeboard regulation.} \end{split}$		
Assume that the <u>freeboard</u> is proportional to	the depth.		
$Fb(L, B, D_{mld}, C_{B,d}) = C_{Fd}$	$_{b} \cdot D_{mld}$		
$D_{Fb} \ge T_s + C_{Fb} \cdot J$	D _{mld}		
The coefficient C_{Fb} can be obtained from the basis ship.			
$C_{Fb} = \frac{Fb}{D_{mld}}\Big _{Basis} = \frac{6.68}{26}$			
Check: Freeboard of the design ship			
$D_{Fb} \ge T_s + C_{Fb} \cdot D_{mld}$			
$D_{mld} + t_{stringer} \ge T_s + C_{Fb} \cdot D_{mld}$			
$27.3 + 0.02 \ge 12.1 + 0.257 \cdot 27.3$			
27.32 ≥19.11 : Satisfied			
It is satisfied. However, this method is used for a rou			
dimensions are determined more accurately, <u>freeboard</u> accurately through the freeboard regulation.	d needs to be calculated more		
accurately through the neebbard regulation.			

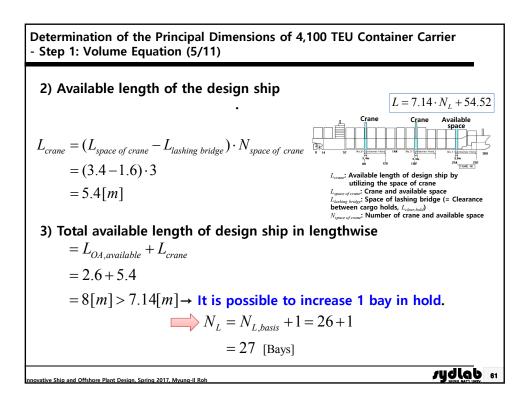


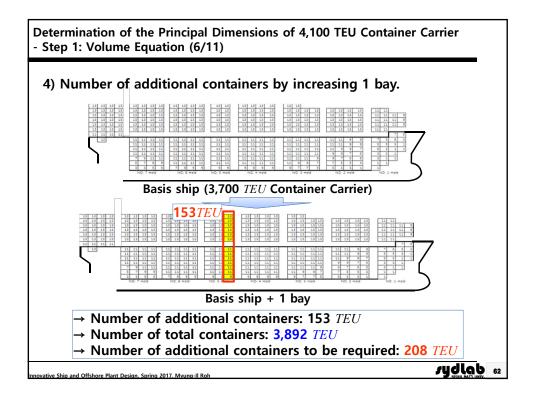

Design Ship: 4,100 TI	EU Container Carr	ier	
	Basis Ship	Owner's requirements	Basis Ship • Dimensional Ratios
Principal Dimensions LOA LBP	257.4 m 245.24 m	less than 260.0 m	L / B = 7.62 $B / T_d = 3.19$
Bmld	32.2 m	less than 32.25 m	B/D = 1.67
Dmld Td /Ts (design / scant)	19.3 m 10.1 / 12.5 m	abt. 11.0 / 12.6 m	L/D = 12.71 • Hull Form Coefficient
Deadweight (design / scant)	34,400 / 50,200 ton	40,050 / 49,000 ~ 51,000 ton	$C_{B d} = 0.62$
Capacity			• Lightweight (=16,000 t
Container on Deck / in Hold	2,174 TEU / 1,565 TEU	abt. 4,100 TEU	- Structural weight
Ballast Water Heavy Fuel Oil	13,800 m ³ 6,200 m ³	abt. 11,500 m ³	≈ 11,000 ton (≈68%) - Outfit weight
Main Engine & Speed M/E Type MCR (BHP × rpm)	Sulzer 7RTA84C 38.570 BHP × 102 RPM		$\approx 3,200 \text{ ton } (\approx 20\%)$ - Machinery weight $\approx 1,800 \text{ ton } (\approx 12\%)$
NCR (BHP x rpm) Service Speed at NCR (Td, 15% SM)	34,710 BHP × 8.5 RPM 22.5 knots (at 11.5 m) at	24.5 knots (at 11.0 m)	Cargo density = $\frac{\text{Deadweight}_{\text{scant}}}{\text{Cargo hold capacity}}$
DFOC at NCR	30,185 BHP 103.2 ton		$= \frac{\text{Deadweight}_{\text{scant}}}{V_{\text{container}} \times N_{\text{container}}}$
Cruising Range	20,000 N/M	abt. 20,000 N/M	$=\frac{50,200}{46.9\cdot 3,739}$
Complement (Crew)	30 Person	30 Person	$= 0.29 [ton / m^3] < 0.7$

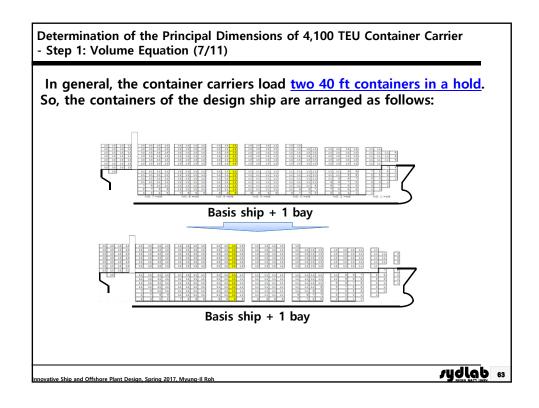


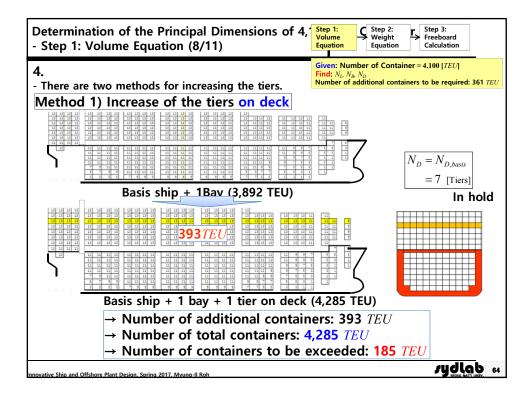


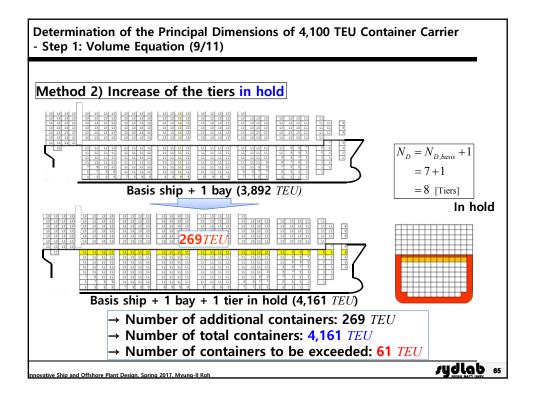


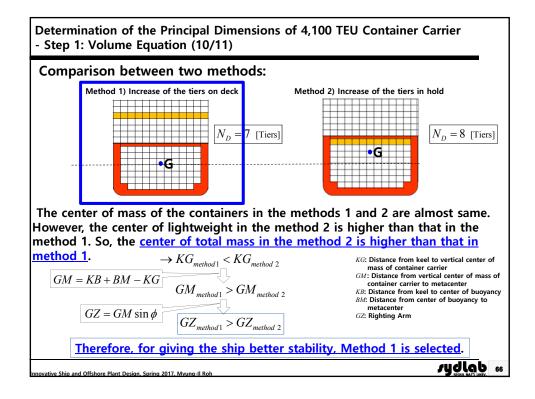


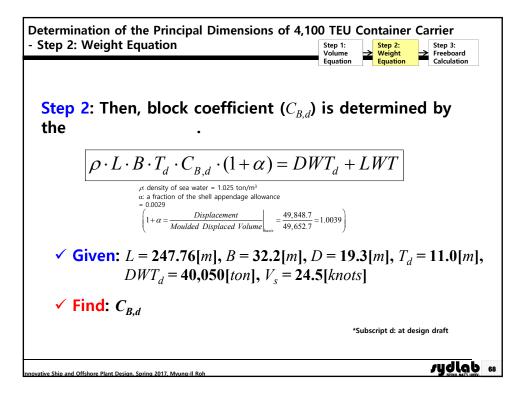


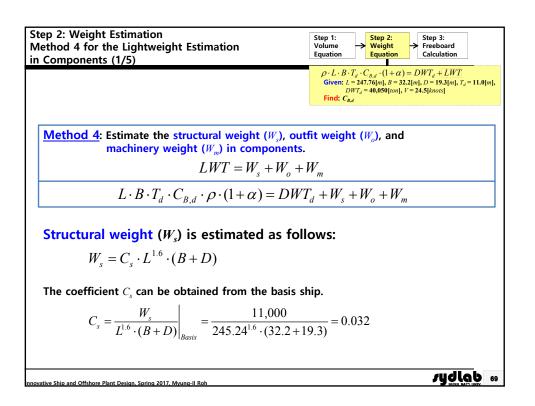


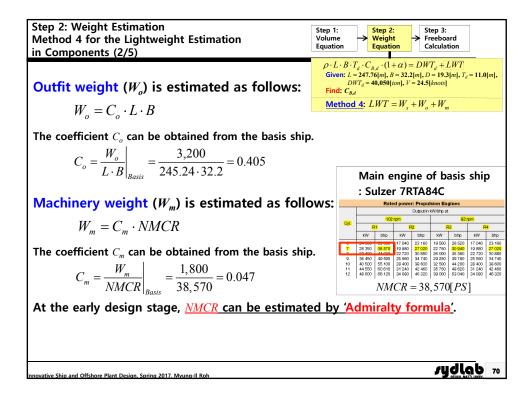


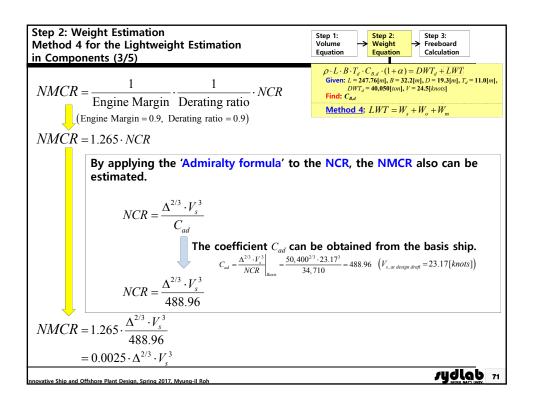




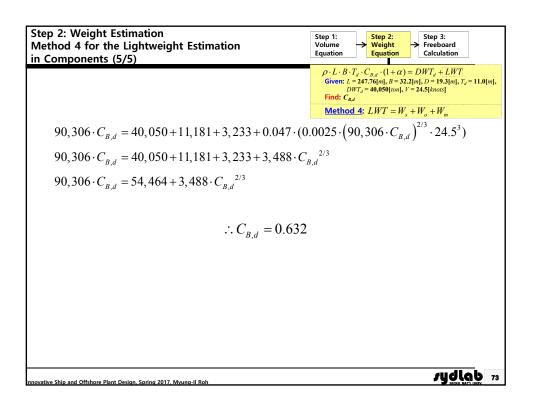

Determination of the Principal Dimensions of 4,100 TEU Container Carrier - Step 1: Volume Equation (11/11)

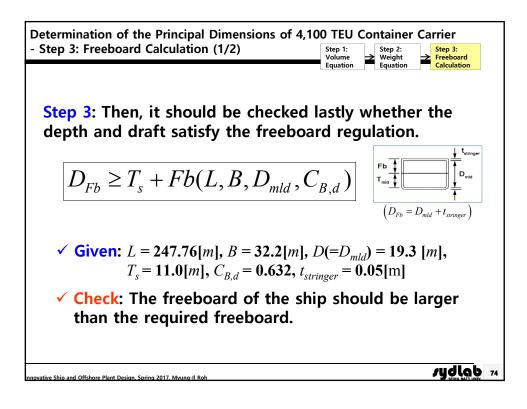

5. Principal dimensions (*L*, *B*, *D*) determined by the arrangement of containers in cargo hold (N_L , N_D , N_B):

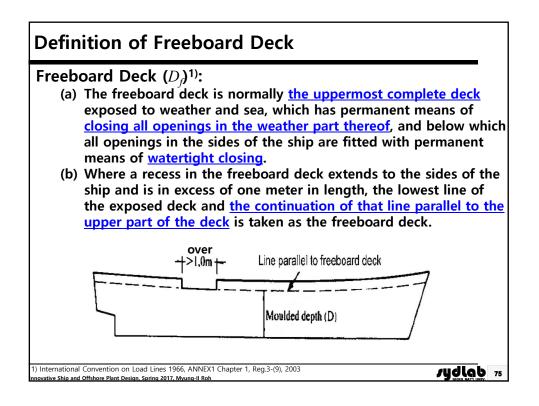

$N_L = 27$ [Bays]	$N_B = 11$ [Rows]	$N_D = 7$ [Tiers]
$L = 7.14 \cdot N_L + 54.52$	$B = 2.523 \cdot N_B + 4.447$	$D = 2.604 \cdot N_D + 1.072$
$= 7.14 \cdot 27 + 54.52$	$= 2.523 \cdot 11 + 4.447$	$= 2.604 \cdot 7 + 1.072$
= 247.76[m]	=32.2[m]	=19.3[m]
	-	-
$\therefore L = 247.76[m],$	B = 32.2[m],	D = 19.3[m]

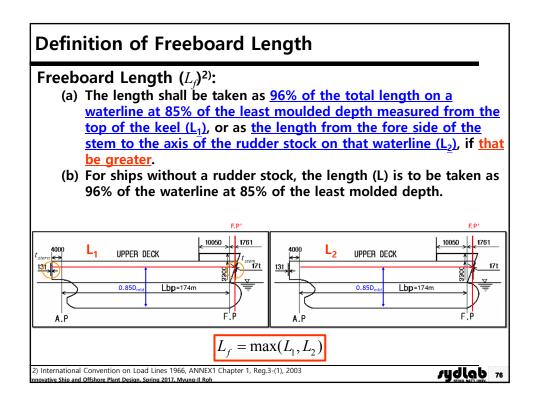

Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

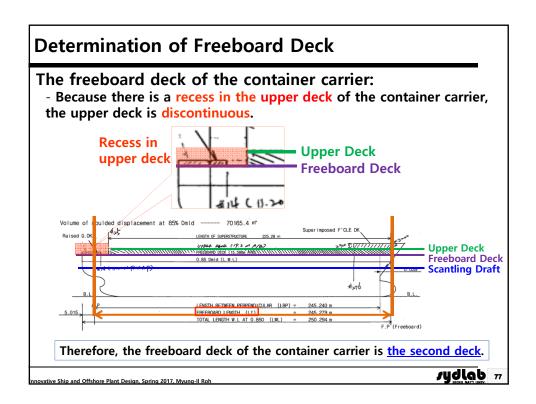
ydlab 67










Step 2: Weight Estima Method 4 for the Ligh in Components (4/5)		Step 1: Volume Equation	
$W_{s} = C_{s} \cdot L^{1.6} \cdot (B + D) \qquad C_{s} = 0.032$ $W_{o} = C_{o} \cdot L \cdot B \qquad C_{o} = 0.405$ $W_{m} = C_{m} \cdot NMCR \qquad C_{m} = 0.047$ $NMCR = 0.0025 \cdot \Delta^{2/3} \cdot V_{s}^{-3}$		$\begin{array}{l} \rho \cdot L \cdot B \cdot T_{d} \cdot C_{B,d} \cdot (1+\alpha) = DWT_{d} + LWT\\ \textbf{Given: } L = 247.76[m], B = 32.2[m], D = 19.3[m], T_{d} = 11.0[m],\\ DWT_{d} = 40.050[ton], V = 24.5[knots]\\ \textbf{Find: } C_{B,d}\\ \textbf{Method 4: } LWT = W_{s} + W_{o} + W_{m} \end{array}$	
$L \cdot B \cdot T_d \cdot C$	$G_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + W_s + W_s$	$W_o + W_m$	
$L \cdot B \cdot T_d \cdot C$	$C_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L$	^{1.6} $\cdot (B+D) + C_o \cdot L \cdot B + C_m \cdot NMCR$	
$L \cdot B \cdot T_d \cdot C$	$C_{Bd} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L^2$	$^{1.6} \cdot (B+D) + C_o \cdot L \cdot B$	
	$+C_m \cdot (0.0025 \cdot \Delta)$	$\Delta^{2/3} \cdot V_s^{-3}$)	
$L \cdot B \cdot T_d \cdot C$	$C_{B,d} \cdot \rho \cdot (1+\alpha) = DWT_d + C_s \cdot L^2$	$^{1.6} \cdot (B+D) + C_o \cdot L \cdot B$	
	$+C_{m} \cdot (0.0025 \cdot ($	$L \cdot B \cdot T_d \cdot C_{B,d} \cdot \rho \cdot (1+\alpha) \Big)^{2/3} \cdot V_s^3 \Big)$	
$247.76 \cdot 32.2 \cdot 11.0 \cdot C_{B,d} \cdot 1.0$	$25 \cdot (1 + 0.0039) = 40,050 + 0.032$	$\cdot 247.76^{1.6} \cdot (32.2 + 19.3) + 0.405 \cdot 247.76 \cdot 32.2$	
$+0.047 \cdot (0.0025 \cdot (247.76 \cdot 32.2 \cdot 11.0 \cdot C_{B,d} \cdot 1.025 \cdot (1+0.0039))^{2/3} \cdot 24.5^3)$			
$90,306 \cdot C_{1}$	$90,306 \cdot C_{B,d} = 40,050 + 11,181 + 3,233$		
	+0.047 \cdot (0.0025 \cdot (90, 306 \cdot 0	$\left(C_{B,d}\right)^{2/3} \cdot 24.5^3$	
nnovative Ship and Offshore Plant Design, Si	oring 2017, Myung-Il Roh	rydlab 72	

