

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
🗹 Ch. 3 Design Model	
Image: Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
Image: Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
☑ Ch. 11 Outfitting Design	
nnovative Ship and Offshore Plant Design. Spring 2017. Myung-Il Roh	

2

Regulation of the International Convention on Load Lines (ICLL) 1966

9

3. Required Data for the Calculation of Freeboards

To calculate the freeboard of a ship in accordance with ICLL 1966, some data and plans are required as follows:

- Lines or Offset Table (Fared Lines)
- General Arrangement Plan (G/A)
- Hydrostatic Table
- Midship Section Plan (M/S)
- Shell Expansion Plan

tive Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

- Construction Profile & Decks Plan
- Superstructure Construction Plan,
- Aft body Construction, Fore body Construction Plans

rydlab 21

(4) Deduct Trunks (2/	tion for S 6)	Superstructure	and	1	Co Co	bular freeboard(F,) porrection for block (C _{B,0.85Dmld} ≠0.	calculation coefficient .68) $(D_f \neq L_f/15)$
 Effective 	length c	of superstructu	re (<i>L_E</i>)	4		Deduction for supe and trunk	erstructure s
L_{E} = Mean Leng	gth × [min(Star	ndard Height, Actual Hei	ght)] / Standard Heig	ht 5		Correction for (sheer ≠ standar	sheer d sheer)
If the height ① higher that	t of an end an the stan	losed superstructur dard height, the eff	e is fective length of	6	7 Ma	Minimum bow aximum molded su 3.700TEU Conta	height ummer draft iner Carrier
an enclosed	superstruct	ure of standard he	ight shall be	ltem		Mean length (m)	Height (m)
its length.				Superstructu	ure	225.28	3.71
2 less than	the standar	d height, the effect	tive lenath	Raised Q' D	eck	11.20	1.24
the standard The standa table:	height. rd height o	f a superstructure	shall be as given	in the	e fo	ollowing	
	L_{f} (m)	Raised quarterdeck (m)	All other superstruct	ures (m)			
	30 or less	0.90	1.80				
	75	1.20	1.80				
		4.00	2 30				
	125 or more	1.80	2.50				

unks (4/6)	for	Sup	erst	ruct	ure	and			1	Tabular fre Correction (C _E Correction	for block coef $0.85Dmkd \neq 0.68$ for depth (D _f	ulation fficient ≠L _t /15
eduction fro Where the effe and trunk is (1.0 L _f	om ective	the e leng	free th (L ₁	boa) of s	r d upers	truct	ures		4 5 6 7	Deductio Corro (sheer Minin Maximum	to for superstruand trunks	r eer) ht er draf
Deduction fro 2 less than 1.0 obtained from t	L_{μ} th the f	ne free ne dec follow	board luctio ing ta	$= \begin{pmatrix} 35\\ 86\\ 1,0 \end{pmatrix}$	0 <i>mm</i> 0 <i>mm</i> 070 <i>mr</i> II be	: <i>L_f</i> : <i>L_f</i> <i>n</i> : <i>L_f</i> a per	$= 24n$ $= 85n$ ≥ 122 centag	n n 2.m ge		$L_f = 100$ $L_E = 233.00$, <i>L</i> ₂) = 245.	217["
Percentage of d	Toti	CTION	τοr τy	pe A	and	B SI	nks					1
	0	0.1 L	0.2 L	0.3 L	0.4 L	0.5 L	0.6 L	0.7 L	0.8 L	0.9 L	1.0 L	-
	0	7	14	21	31	41	52	63	75.3	87.7	100	

4) Deduction to runks (5/6)	r Sup	erst	ruct	ture	an	d			2	Correctio	reeboard(F _i) calo on for block coe $C_{B,0.85Dmid} \neq 0.68$	fficient
Deduction from	n the	free	boa	rd					4	Deducti	ion for superstru and trunks	ucture
Example 3,700TEU C	ontainer	⁻ Carrie	er)						5	Coi (shee	rrection for shee r ≠ standard sh	er)
$L_f = 245.279[m]$ $L_f = 233.00[m]$									6	Min Maximum	mum bow heig molded summ	ht er draft
$\therefore L_E < L_f$										$L_f = \max(L_E = 233.0)$	$(L_1, L_2) = 245.$ 00[m]	279[m]
Where the effecti	ve lena	th (L	,) of	supe	erstru	ictur	es ar	nd tru	unk is	s less	than	
Where the effection $1.0L_{p}$ the deduction table: $L_{E}/L_{f} = 0.95$	ve leng on shall	th (<i>L_E</i> be a) of perc	supe enta	erstru ge ol	ictur btain	es ar ed fo	nd tru orm	unk is the fo	s less ollow	than ing	
Where the effection $1.0L_{p}$ the deduction table: $L_{E} / L_{f} = 0.95$	ve leng on shall	th (<i>L_E</i> be a	s) of perc	supe entag	and Tru	nks	es ar ed fo	nd tru orm	unk is the fo	s less ollow	than ing	
Where the effection of the second se	ve leng on shall	th (<i>L_E</i> be a	superst 0.3 L 2 1	supe entag tructures 0.4 L 3 1	and Tru 0.5 L 4 1	nks 0.6 L 5 2	es ar ed fo 0.7 L 6 3	0.8 L 75.3	unk is the fo	s less ollow	than ing	

(4) Deduction for Superstructure and Trunks (6/6)	1 Tabular freeboard(F _v) calculation 2 Correction for block coefficient (C_BOSDMd≠0.68) 3 Correction for denth (D_v ≠1/15)
• Deduction from the freeboard Example 3,700TEU Container Carrier) $L_f = 245.279[m]$ Deduction from the freeboard = $\begin{cases} 350mm & : L_f = 24m \\ 860mm & : L_f = 85m \end{cases}$	Correction for depin ($D_r \neq L_f / 1$) Deduction for superstructure and trunks S Correction for sheer (sheer $r \neq$ standard sheer) G Minimum bow height 7 Maximum molded summer draft $L_f = \max(L_1, L_2) = 245.279[m]$ Percentage of deduction for superstructures = 93.85%
$1,070mm : L_f \ge 122m$	
The deduction from the freeboard is multiplied by the per deduction for superstructure.	rcentage of
Deduction from the freeboard $= 1,070 \cdot 0.9385 = 1,004$	$\lfloor mm \rfloor$
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh	rydlab 34

(a) Excess or deficiency of sheer b Design ship has no sheer. c Mainum model c Mainum height c Main	;) calculation :k coefficient 0.68)	freeboard(F _t) c tion for block c (C _{8.0.85Dmld} ≠0.68	1 Tabular 2 Correct				4/7)	er (4	Shee	tion for	Correc	5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	th ($D_f \neq L_f/15$) perstructure tks r sheer ard sheer) v height summer draf	ion for depth (I ction for supers and trunks orrection for sh eer ≠ standard s inimum bow he um molded sum	A Correct A Deduc 5 C 6 M 7 Maximu					er	of shee heer.	deficiency p has no s	Excess or Design shi	(a) I ➡ D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	245.279[1	$L_{f} = 24$			Actua				Standard*		Station	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Product 0 0 0 0	Factor 1 3 3 1	Ordinate 0 0 0 0 S	Height (mm) S1 S2 S3 S4	Product 2,294 3,057 771 0	Factor 1 3 3 1	Ordinate 2,294 1,019 257 0 (L_/3 + 10)	Height (mm) $25.0(L_{f}/3+10)$ $11.1(L_{f}/3+10)$ $2.8(L_{f}/3+10)$ 0 $S_{h} = 8.34$	A.P L _f /6(from A.P) L _f /3(from A.P) Amidiship Mean height	After half
Mean height $S_F = 16.68(Lf/3 + 10)$ 1,526 S_T 0 Standard height of sheer (S_o): ($S_A + S_F$)/2 = 1,146 mm (0+1,542+6,111+4,588)/(1+3+4) Mean height of actual sheer (S_0): ($S_A + S_F$)/2 = 0 mm			0 0 0 0	1 3 3 1	0 0 0 0	54 55 56 57	0 1,542 6,111 4,588	1 3 3 1	0 514 2,037 4,588	0 5.6(L _f /3+10) 22.2(L _f /3+10) 50.0(L _f /3+10)	Amidship L _f /3(from F.P) L _f /6(from F.P) F.P	Forw ard half
Standard height of sheer (S _o): $(S_A + S_F)/2 = 1,146 \text{ mm}$ Mean height of actual sheer (S): $(S_A + S_F)/2 = 0 \text{ mm}$			0		Sf	/	1,526		8(Lf/3 +10)	S _F = 16.6	Mean height	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	+1)=765 ·3+1)=1,52)/(1+3+3+1) 88)/(1+3+3+	057+771+C +6,111+4,58	` (2,294+3, - (0+1,542-		146 mm 0 mm	2 = 1,)/2 =	+S _F)//	(S _o): (S _A · er (S): (S	ht of sheer (f actual she	ndard heig an height o	Stai Mea

(5) Correction for Sheer (6/7)]	1 Tabular free 2 Correction (C _B	to block coefficient for block coefficient 0.85Dm/a≠0.68) for depth (D. +1, (15))
(b) Sheer credit for superstructure If the forward half of sheer profile or the after half of sheer profile are greater than the standard, sheer or is given for a poop or forecastle. The sheer credit is the following: $s = \frac{Y}{3} \cdot \frac{L'}{L_f}$ $s = \frac{Y}{2} \cdot \frac{L'}{L_f}$	een act ucture cular (= ength o maxim	Correction Deduction Correction Co	to define (1) regrins the formula of the superstructure of transfer the standard sheer) with bow height the standard defined of the superstructure of the
(1) Sheer credit for forecastle $s_f = \frac{Y_f}{3} \cdot \frac{L'}{L_f} = \frac{h_a - h_s}{3} \cdot \frac{L'}{L_f} = \frac{3,200 - 2,300}{3} \cdot \frac{25.3}{245.279} = 31$ $\rightarrow S'_f = S_f + s_f = 0 + 31 = 31 \ [mm]$	f = 245.279 (actual heig = 2,300 [n (length of f = 0 f = 0	P[m] ight of forecas mm] f forecastle) =	tle) = 3,200 [mm] 25.3 [m]
(2) Sheer credit for poop $s_p = \frac{Y_p}{3} \cdot \frac{L'}{L_f} = \frac{0 - 2,300}{3} \cdot \frac{0}{245.279} = 0$ $\rightarrow S'_a = S_a + s_p = 0 + 0 = 0 \ [mm]$ No poop deck for design ship $(Y_p = 0)$	L _r (m) 30 or less 75 125 or more	Raised quarterdeck (m) 0.90 1.20 1.80	All other superstructures (m) 1.80 1.80 2.30
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh		/y	

(5) Summary		
Example 3,700TEU Container Carrier)		•
Tabular freeboard	3,770 mm	
Correction for block coefficient	0 mm	
Correction for depth (D _f)	0 mm	
Deduction for superstructure and trunks	- 1,004 mm	
Correction for sheer	311 mm	$*d_s = D_f - fs$
Correction for minimum bow height	0 mm	*Margin _ d
Calculated summer freeboard (f_s)	3,077 mm	$\operatorname{Margin} = a_s -$
Depth for freeboard (D _f)	15.601 m	
Maximum molded summer draft (d _s)	12.524 m	
Molded summer draft required by owner (T_s)	12.500 m	
Margin	24 mm	
Molded summer draft required by owner (T _s) Margin	12.500 m 24 mm	